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Abstract 

Nonlinear Support Vector Machines (SVMs) are investigated for 
visual sex classification with low resolution "thumbnail" faces (21-
by-12 pixels) processed from 1,755 images from the FE RET face 
database. The performance of SVMs is shown to be superior to 
traditional pattern classifiers (Linear, Quadratic, Fisher Linear Dis­
criminant, Nearest-Neighbor) as well as more modern techniques 
such as Radial Basis Function (RBF) classifiers and large ensemble­
RBF networks. Furthermore, the SVM performance (3.4% error) 
is currently the best result reported in the open literature. 

1 Introduction 

In recent years, SVMs have been successfully applied to various tasks in com­
putational face-processing. These include face detection [14], face pose discrim­
ination [12] and face recognition [16]. Although facial sex classification has 
attracted much attention in the psychological literature [1, 4, 8, 15], relatively few 
computatinal learning methods have been proposed. We will briefly review and 
summarize the prior art in facial sex classification. l 

Gollomb et at. [10] trained a fully connected two-layer neural network, SEXNET, to 
identify sex from 30-by-30 face images. Their experiments on a set of 90 photos (45 
males and 45 females) gave an average error rate of 8.1% compared to an average 
error rate of 11.6% from a study of five human subjects. Brunelli and Poggio [2] 

lSex classification is also referred to as gender classification (for political correctness). 
However, given the two distinct biological classes, the scientifically correct term is sex 
classification. Gender often denotes a fuzzy continuum of feminine ~ masculine [1). 
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Figure 1: Sex classifier 

developed HyperBF networks for sex classification in which two competing RBF 
networks, one for male and the other for female, were trained using 16 geometric 
features as inputs (e.g., pupil to eyebrow separation, eyebrow thickness, and nose 
width). The results on a data set of 168 images (21 males and 21 females) show 
an average error rate of 21%. Using similar techniques as Golomb et al. [10] and 
Cottrell and Metcalfe [6], Tamura et al. [18] used multi-layer neural networks 
to classify sex from face images at multiple resolutions (from 32-by-32 to 8-by-8 
pixels). Their experiments on 30 test images show that their network was able to 
determine sex from 8-by-8 images with an average error rate of 7%. Instead of using 
a vector of gray levels to represent faces, Wiskott et al. [20] used labeled graphs of 
two-dimensional views to describe faces. The nodes were represented by wavelet­
based local "jets" and the edges were labeled with distance vectors similar to the 
geometric features in [3]. They used a small set of controlled model graphs of males 
and females to encode "general face knowledge," in order to generate graphs of new 
faces by elastic graph matching. For each new face, a composite reconstruction 
was generated using the nodes in the model graphs. The sex of the majority of 
nodes used in the composite graph was used for classification. The error rate of 
their experiments on a gallery of 112 face images was 9.8%. Recently, Gutta et 
al. [11] proposed a hybrid classifier based on neural networks (RBFs) and inductive 
decision trees with Quinlan's C4.5 algorithm. Experiments with 3000 FERET faces 
of size 64-by-72 pixels yielded an error rate of 4%. 

2 Sex Classifiers 

A generic sex classifier is shown in Figure 1. An input facial image x generates a 
scalar output f(x) whose polarity - sign of f(x) - determines class membership. The 
magnitude II f (x II can usually be interpreted as a measure of belief or certainty in the 
decision made. Nearly all binary classifiers can be viewed in these terms; for density­
based classifiers (Linear, Quadratic and Fisher) the output function f(x) is a log 
likelihood ratio, whereas for kernel-based classifiers (Nearest-Neighbor, RBFs and 
SVMs) the output is a "potential field" related to the distance from the separating 
boundary. 



2.1 Support Vector Machines 

A Support Vector Machine is a learning algorithm for pattern classification and 
regression [19, 5]. The basic training principle behind SVMs is finding the optimal 
linear hyperplane such that the expected classification error for unseen test samples 
is minimized - i.e., good generalization performance. According to the structural 
risk minimization inductive principle [19], a function that classifies the training data 
accurately and which belongs to a set of functions with the lowest VC dimension 
[5] will generalize best regardless of the dimensionality of the input space. Based 
on this principle, a linear SVM uses a systematic approach to finding a class of 
functions with the lowest VC dimension. For linearly non-separable data, SVMs 
can (nonlinearly) map the input to a high dimensional feature space where a linear 
hyperplane can be found. Although there is no guarantee that a linear separable 
solution will always exist in the high dimensional space, in practice it is quite feasible 
to construct a working solution. 

Given a labeled set of M training samples (Xi , Yi), where X i E RN and Yi is the 
associated label (Yi E {-I, I}), a SVM classifier finds the optimal hyperplane that 
correctly separates (classifies) the data points while maximizing the distance of 
either class from the hyperplane (the margin). Vapnik [19] shows that maximizing 
the margin distance is equivalent to minimizing the VC dimension in constructing 
an optimal hyperplane. Computing the best hyperplane is posed as a constrained 
optimization problem and solved using quadratic programming techniques. The 
discriminant hyperplane is defined by the level set of 

M 

f(x) = L Yi Q:i . k(x, Xi) + b 
i=l 

where k( ·, ·) is a kernel function and the sign of f(x) determines the membership 
of x. Constructing an optimal hyperplane is equivalent to finding all the nonzero 
Q:i . Any vector Xi that corresponds to a nonzero Q:i is a supported vector (SV) of 
the optimal hyperplane. A desirable feature of SVMs is that the number of training 
points which are retained as support vectors is usually quite small, thus providing 
a compact classifier. 

For a linear SVM, the kernel function is just a simple dot product in the input 
space while the kernel function in a nonlinear SVM effectively projects the samples 
to a feature space of higher (possibly infinite) dimension via a nonlinear mapping 
function: 

~ : RN ~ F M , M» N 

and then constructs a hyperplane in F. The motivation behind this mapping is 
that it makes possible a larger class of discriminative functions with which to find a 
linear hyperplane in the high dimensional feature space. Using Mercer's theorem [7], 
the expensive calculations required in projecting samples into the high dimensional 
feature space can be replaced by a much simpler kernel function satisfying the 
condition 

k(X,Xi) = ~(x) . ~(Xi) 
where ~ is the implicit nonlinear projection. Several kernel functions, such as 
polynomials and radial basis functions, have been shown to satisfy Mercer's theorem 
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Figure 2: Automatic face alignment system [13]. 

Figure 3: Some processed FE RET faces, at high resolution 

and have been used successfully in nonlinear SVMs. In fact, by using different 
kernel functions, SVMs can implement a variety of learning machines, some of 
which coincide with classical architectures. Nevertheless, automatic selection of the 
"right" kernel function and its associated parameters remains problematic and in 
practice one must resort to trial and error for model selection. 

A radial basis function (RBF) network is also a kernel-based technique for improved 
generalization, but it is based instead on regularization theory [17]. The number of 
radial bases and their centers in a conventional RBF network is predetermined, 
often by k-means clustering. In contrast, a SVM with the same RBF kernel 
will automatically determine the number and location of the centers, as well as 
the weights and thresholds that minimize an upper bound on the expected risk. 
Recently, Evgeniou et al. [9] have shown that both SVMs and RBFs can be 
formulated under a unified framework in the context of Vapnik's theory of statistical 
learning [19]. As such, SVMs provide a more systematic approach to classification 
than classical RBF and various other neural networks. 

3 Experiments 

In our study, 256-by-384 pixel FERET "mug-shots" were pre-processed using an 
automatic face-processing system which compensates for translation, scale, as well 
as slight rotations. Shown in Figure 2, this system is described in detail in 
[13] and uses maximum-likelihood estimation for face detection, affine warping 
for geometric shape alignment and contrast normalization for ambient lighting 
variations. The resulting output "face-prints" in Figure 2 were standardized to 
80-by-40 (full) resolution. These "face-prints" were further sub-sampled to 21-by-
12 pixel "thumbnails" for our low resolution experiments. Figure 3 shows a few 
examples of processed face-prints (note that these faces contain little or no hair 
information). A total of 1755 thumbnails (1044 males and 711 females) were used 



Classifier Error Rate 
Overall Male Female 

SVM with Gaussian RBF kernel 3.38% 2.05% 4.79% 
SVM with Cubic polynomial kernel 4.88% 4.21% 5.59% 
Large ensemble-RBF 5.54% 4.59% 6.55% 
Classical RBF 7.79% 6.89% 8.75% 
Quadratic classifier 10.63% 9.44% 11.88% 
Fisher linear discriminant 13.03% 12.31% 13.78% 
Nearest neighbor 27.16% 26.53% 28.04% 
Linear classifier 58.95% 58.47% 59.45% 

Table 1: Experimental results with thumbnails. 

in our experiments. For each classifier, the average error rate was estimated with 
5-fold cross validation (CV) - i. e., a 5-way dataset split, with 4/5th used for 
training and 1/ 5th used for testing, with 4 subsequent non-overlapping rotations. 
The average size of the training set was 1496 (793 males and 713 females) and the 
average size of the test set was 259 (133 males and 126 females) . 
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Figure 4: Error rates of various classifiers 

The SVM classifier was first tested with various kernels in order to explore the space 
of models and performance. A Gaussian RBF kernel was found to perform the best 
(in terms of error rate), followed by a cubic polynomial kernel as second best. In the 
large ensemble-RBF experiment, the number of radial bases was incremented until 
the error fell below a set threshold. The average number of radial bases in the large 
ensemble-RBF was found to be 1289 which corresponds to 86% of the training set. 
The number of radial bases for classical RBF networks was heuristically set to 20 



prior to actual training and testing. Quadratic, Linear and Fisher classifiers were 
implemented using Gaussian distributions and in each case a likelihood ratio test 
was used for classification. The average error rates of all the classifiers tested with 
21-by-12 pixel thumbnails are reported in Table 1 and summarized in Figure 3. 

The SVMs out-performed all other classifiers, although the performance of large 
ensemble-RBF networks was close to SVMs. However, nearly 90% of the training 
set was retained as radial bases by the large ensemble-RBF. In contrast, the number 
of support vectors found by both SVMs was only about 20% of the training set. We 
also applied SVMs to classification based on high resolution images. The Gaussian 
and cubic kernel performed equally well at both low and high resolutions with only 
a slight 1% error rate difference. We note that as indicated in Table 1, all the 
classifiers had higher error rates in classifying females, most likely due to the general 
lack of prominent and distinct facial features in female faces, as compared to males. 

4 Discussion 

We have presented a comprehensive evaluation of various classification methods 
for determination of sex from facial images. The non-triviality of this task (made 
even harder by our "hairless" low resolution faces) is demonstrated by the fact that 
a linear classifier had an error rate of 60% (i.e., worse than a random coin flip). 
Furthermore, an acceptable error rate « 5%) for the large ensemble-RBF network 
required storage of 86% of the training set (SVMs required about 20%). Storage of 
the entire dataset in the form of the nearest-neighbor classifier yielded too high an 
error rate (30%). Clearly, SVMs succeeded in the difficult task of finding a near­
optimal class partition in face space with the added economy of a small number of 
support faces. 

Given the relative success of previous studies with low resolution faces it is re­
assuring that 21-by-12 faces can, in fact, be used for reliable sex classification. 
However, most of the previous studies used datasets of relatively few faces, 
consequently with little statistical significance in the reported results. The most 
directly comparable study to ours is that of Gutta et al. [11], which also used 
FERET faces. With a dataset of 3000 faces at a resolution of 64-by-72, their hybrid 
RBF /Decision-Tree classifier achieved a 4% error rate. In our study, with 1800 faces 
at a resolution of 21-by-12, a Gaussian kernel SVM was able to achieve a 3.4% error 
rate. Both studies use extensive cross validation to estimate the error rates. Given 
our results with SVMs, it is clear that better performance at even lower resolutions 
is possible with this learning technique. 
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