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Abstract 

We present a method to bound the partition function of a Boltz­
mann machine neural network with any odd order polynomial. This 
is a direct extension of the mean field bound, which is first order. 
We show that the third order bound is strictly better than mean 
field. Additionally we show the rough outline how this bound is 
applicable to sigmoid belief networks. Numerical experiments in­
dicate that an error reduction of a factor two is easily reached in 
the region where expansion based approximations are useful. 

1 Introduction 

Graphical models have the capability to model a large class of probability distri­
butions. The neurons in these networks are the random variables, whereas the 
connections between them model the causal dependencies. Usually, some of the 
nodes have a direct relation with the random variables in the problem and are 
called 'visibles'. The other nodes, known as 'hiddens', are used to model more 
complex probability distributions. 

Learning in graphical models can be done as long as the likelihood that the visibles 
correspond to a pattern in the data set, can be computed. In general the time it 
takes, scales exponentially with the number of hidden neurons. For such architec­
tures one has no other choice than using an approximation for the likelihood. 

A well known approximation technique from statistical mechanics, called Gibbs 
sampling, was applied to graphical models in [1]. More recently, the mean field 
approximation known from physics was derived for sigmoid belief networks [2]. For 
this type of graphical models the parental dependency of a neuron is modelled by a 
non-linear (sigmoidal) function of the weighted parent states [3]. It turns out that 
the mean field approximation has the nice feature that it bounds the likelihood 
from below. This is useful for learning, since a maximisation of the bound either 
increases its accuracy or increases the likelihood for a pattern in the data set, which 
is the actual learning process. 

In this article we show that it is possible to improve the mean field approximation 
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without losing the bounding properties. In section 2 we show the general theory 
to create a new bound using an existing one, which is applied to a Boltzmann 
machine in section 3. Boltzmann machines are another type of graphical models. 
In contrast with belief networks the connections are symmetric and not directed [4]. 
A mean field approximation for this type of neural networks was already described 
in [5]. An improvement of this approximation was found by Thouless, Anderson 
and Palmer in [6], which was applied to Boltzmann machines in [7]. Unfortunately, 
this so called TAP approximation is not a bound. We apply our method to the mean 
field approximation, which results in a third order bound. We prove that the latter 
is always tighter. 

Due to the limited space it is not possible to discuss the third order bound for 
sigmoid belief networks in much detail. Instead, we show the general outline and 
focus more on the experimental results in section 5. Finally, in section 6, we present 
our conclusions. 

2 Higher order bounds 

Suppose we have a function 10 (x) and a bound bo (x) such that 't/ x 10 (x) ::::: bo (x) . 
Let It(x) and b1(x) be two primitive functions of lo(x) and bo(x) 

It(x) = J dx lo(x) and b1(x) = J dx bo(x) (1) 

such that It (v) = b1 (v) for some v. Note that we can always add an appropriate 
constant to the primitive functions such that they are indeed equal at x = v . 

Since the surface under 10 (x) at the left as well as at the right of x = v is obviously 
greater than the surface under bo(x) and the primitive functions are equal at x = v 
(by construction), we know 

{ It (x) :s; b1 (x) for x :s; v 
It (x) ::::: b1 (x) for x ::::: v (2) 

or in shorthand notation It (x) ~ bt (x). It is important to understand that even if 
lo(v) > bo(v) the above result holds. Therefore we are completely free to choose v. 

If we repeat this and let 12 (x) and b2 (x) be two primitive functions of It (x) and 
bt{x), again such that h(v) = b2 (v), one can easily verify that 't/x h(x) ::::: b2 (x) . 

Thus given a lower bound of lo(x) we can create another lower bound. In case the 
given bound is a polynomial of degree k, the new bound is a polynomial of degree 
k + 2 with one additional variational parameter. 

To illustrate this procedure, we derive a third order bound on the exponential 
function starting with the well known linear bound: the tangent of the exponential 
function at x = v. Using the procedure of the previous section we derive 

't/X ,V lo(x) = eX ::::: eV (1 + x - v) = bo(x) (3) 

It (x) = eX ~ el' + eV 
(( 1 + J1. - v) (x - J1.) + ~ (x - J1.) 2) = b1 (x) (4) 

't/",I', >' h(x) = eX ::::: el' { 1 + x - J1. + e>' C ~ A (x - J1.)2 + ~ (x - J1.)3) } = b2(x{5) 

with A = v - J1.. 



3 Boltzmann machines 

In this section we derive a third order lower bound on the partition function of 
a Boltzmann machine neural network using the results from the previous section. 
The probability to find a Boltzmann machine in a state i E {-I, +1}N is given by 

1 1 (1.. . ) 
P (i) = Z exp (- E (i)) = Z exp 20'J Si Sj + 0' Si (6) 

There is an implicit summation over all repeated indices (Einstein's convention). 
Z = Lall s exp ( - E (i)) is the normalisation constant known as the partition func­
tion which requires a sum over all, exponentially many states. Therefore this sum 
is intractable to compute even for rather small networks. 

To compute the partition function approximately, we use the third order bound 1 

from equation 5. We obtain 

where t::..E = J-L (i) + E . Note that the former constants J-L and A are now functions 
of i, since we may take different values for J-L and A for each term in the sum. In 
principle these functions can take any form. If we take, for instance, J-L (i) = - E (i) 
the approximation is exact. This would lead, however, to the same intractability 
as before and therefore we must restrict our choice to those that make equation 7 
tractable to compute. We choose J-L (8) and A (8) to be linear with respect to the 
neuron states Si : 

(8) 

One may view J-L (i) and A (.S) as (the negative of) the energy functions for the 
Boltzmann distribution P ~ exp (J-L (i)) and P ~ exp (A (i)). Therefore we will 
sometimes speak of 'the distribution J-L (i)' . Since these linear energy functions cor­
respond to factorised distributions, we can compute the right hand side of equation 7 
in a reasonable time, 0 (N3 ). 

To obtain the tightest bound, we may maximise equation 7 with respect to its 
variational parameters J-LD, J-L i , AD and Ai . 

A special case of the third order bound 

Although it is possible to choose Ai f:. 0, we will set them to the suboptimal value 
Ai = 0, since this simplifies equation 7 enormously. The reader should keep in mind, 
however, that all calculations could be done with non-zero Ai . Given this choice we 
can compute the optimal values for J-LD and AD, given by 

(9) 

where (-) denotes an average over the (factorised) distribution J-L (i) . Using this 
solution the bound reduces to the simple form 

(10) 

lUsing the first order bound from equation 3 resuJts in the standard mean field bound. 



where ZI' is the partition function of the distribution fl (8). The term (t::..E2) 

corresponds to the variance of E + fl i Si with respect to the distribution fl (8), since 
flo = - (E + fli si ). ).0 is proportional to the third order moment according to (9). 
Explicit expressions for these moments can be derived with patience. 

There is no explicit expression for the optimal fl i as is the case with the stan­
dard mean field equations. An implicit expression, however, follows from setting 
the derivative with respect to fl i to zero. We solved fl i numerically by iteration. 
Wherever we speak of 'fully optimised', we refer to this solution for fl i . 

Connection with standard Illean field and TAP 

We like to focus for a moment on the suboptimal case where fl i correspond to the 
mean field solution, given by 

Vi mi ~f tanhfli = tanh (Oi + Oi j mj ) (11) 

For this choice for fl i the logZI' term in equation 10 is equal to the optimal mean 
field bound2 . Since the last term in equation 10 is always positive, we conclude that 
the third order bound is always tighter than the mean field bound. 

The relation between TAP and the third order bound is clear in the region of small 
weights. If we assume that 0 (Oi j3) is negligible, a small weight expansion of equa­
tion 10 yields 

logZ ?: logZI' + log {I + ~eAO (t::..E2)} >;:J logZI' + ~Oij2 (1- m;) (1 - mj) 
4 (12) 

where the last term is equal to the TAP correction term [7] . Thus the third order 
bound tends to the TAP approximation for small weights. For larger weights, how­
ever, the TAP approximation overestimates the partition function, whereas the third 
order approximation is still a bound. 

4 Sigmoid belief networks 

In the previous section we saw how to derive a third order bound on the partition 
function. For sigmoid belief networks3 we can use the same strategy to obtain a 
third order bound on the likelihood of the visible neurons of the network to be in 
a particular state. In this article, we present the rough outline of our method. The 
full derivation will be presented elsewhere. 

It turns out that these graphical models are comparable to Boltzmann machines to 
a large extent. The energy function E(s) (as in equation 6), however, differs for 
sigmoid belief networks: 

-E(s) = Oi jsi Sj + Oi Si - Llog2cosh (OPi Si + Op) (13) 
p 

The last term, known as the local normalisation, does not appear in the Boltz­
mann machine energy function. We have similar difficulties as with the Boltzmann 
machine, if we want to compute the log-likelihood given by 

loge = log L P (s) = log L exp (-E (8)) (14) 
sEHidden sEHidden 

2Be aware of the fact that J.I (S) contains the parameter J.l0 = - (E + J.li Si). This gives 
an important contribution to the expression for log Z 1' . 

3 A detailed description of these networks can be found in [3]. 
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Figure 1: The exact partition function and three approximations: (1) Mean field, (2) 
TAP and (3) Fully optimised third order. The standard deviation of the thresholds 
is 0.1. Each point was averaged over a hundred randomly generated networks of 
20 neurons. The inner plot shows the behaviour of the approximating functions for 
small weights. 

In contrast with the Boltzmann machine, we are not finished by using equation 7 to 
bound C. Due to the non-linear log 2 cosh term in the sigmoid belief energy, the so 
obtained bound is still intractable to compute. Therefore it is necessary to derive an 
additional bound such that the approximated likelihood is tractable to compute (this 
is comparable to the additional bound used in [2]). We make use of the concavity 
of the log function to find a straight line upper bound 4 : V ~ log x ::; eE x - ~ - 1. We 
use this inequality to bound the log 2 cosh term in equation 13 for each p separately, 
where we choose ~p to be ~p (8') = ~pi Si + ~p. In this way we obtain a new energy 
function E (8') which is an upper bound on the original energy. It is obvious that 
the following inequalities hold 

C = L exp ( - E (8')) 2: L exp ( - E (8)) 2: B (E, /-l''\) (15) 
sEHidden sEHidden 

where the last inequality is equal, apart from the tilde, to equation 7. It turns out 
that this bound has a worst case computational complexity of 0 (N4 ), which makes 
it tractable for a large class of networks. 

5 Results 

5.1 Boltzmann machines 

In this section we compare the third order bound for Boltzmann machines with (1) 
the exact partition function, (2) the standard mean field bound and (3) the TAP 

approximation. Therefore we created networks of N = 20 neurons with thresholds 
drawn from a Gaussian with zero mean and 0"1 = 0.1 and weights drawn from a 
Gaussian with zero mean and standard deviation O"dVN, a so called sK-model [8]. 

4This bound is also derivable using the method from section 2 with fo(x) = f,- 2": o. 



In figure 1 the exact partition function versus IJ'2 is shown. In the same figure the 
mean field and fully optimised third order bound are shown together with the TAP 

approximation. For large IJ'2 the exact partition function is linear in IJ'2, whereas 
this is not necessarily the case for small IJ'2 (see figure 1). In fact, in the absence 
of thresholds, the partition function is quadratic for small IJ'2. Since TAP is based 
on a Taylor expansion in the weights upto second order, it is very accurate in 
the small weight region. However, as soon as the size of the weights exceeds the 
radius of convergence of this expansion (this occurs approximately at IJ'2 = 1), the 
approximation diverges rapidly from the true value [9]. 

The mean field and third order approximation are both linear for large IJ'2, which 
prevents that they cross the true partition function and would violate the bound. In 
fact, both approximations are quite close to the true partition function. For small 
weights (1J'2 < 1), however, we see that the third order bound is much closer to the 
exact curved form than mean field is. 

5.2 Sigmoid belief networks 

Mean field bound Third order bound 

j ~: 
~V1"ble 

2 4 0.6 
Relative error (%) 

Figure 2: Histograms of the relative error for the toy network in the middle. The 
error of the third order bound is roughly ten times smaller than the error of the 
mean field bound. 

Although a full optimisation of the variational parameters gives the tightest bound, 
it turns out that the computational complexity of this optimisation is quite large 
for sigmoid belief networks. Therefore, we use the mean field solution for J-Li (equa­
tion 11) instead. This can be justified since the most important error reduction is 
due to the use of the third order bound. From experimental results not shown here 
it is clear that a full optimisation has a share of only a few percent in the total gain. 

To assess the error made by the various approaches, we use the same toy problem 
as in [2] and [10]. The network has a top layer of two neurons, a middle layer of four 
neurons and a lower layer of six visibles (figure 2). All neurons of two successive 
layers are connected with weights pointing downwards. Weights and thresholds are 
drawn from a uniform distribution over [-1,1].5 We compute the likelihood when 
all visibles are clamped to -1. Since the network is rather small, we can compute 
the exact likelihood to compare the lower bound with. 

In figure 2 a histogram of the relative error, I-log B / log £, is plotted for a thousand 
randomly generated networks. It is clear from the picture that for this toy problem 
the error is reduced by a factor ten. For larger weights, however, the effect is less, 
but still large enough to be valuable. For instance, if the weights are drawn from a 
uniform distribution over [-2,2], the error reduces by about a factor four on average 
and is always less than the mean field error . 

5The original toy problem in [2] used a Oil-coding for the neuron activity. To be able 
to compare the results, we transform the weights and thresholds to the -l/+l-coding used 
in this article. 



6 Conclusions 

We showed a procedure to find any odd order polynomial bound for the exponential 
function. A 2k -1 order polynomial bound has k variational parameters. For the 
third order bound these are J.I. and>". We can use this result to derive a bound on the 
partition function, where the variational parameters can be seen as energy functions 
for probability distributions. If we choose those distributions to be factorised, we 
have (N + l)k new variational parameters. Since the approximating function is a 
bound, we may maximise it with respect to all these parameters. 

In this article we restricted ourselves to the third order bound, although an extension 
to any odd order bound is possible. Third order is the next higher order bound to 
naive mean field. We showed that this bound is strictly better than the mean field 
bound and tends to the TAP approximation for small weights. For larger weights, 
however, the TAP approximation crosses the partition function and violates the 
bounding properties. 

We saw that the third order bound gives an enormous improvement compared to 
mean field. Our results are comparable to those obtained by the structured approach 
in [10] . The choice between third order and variational structures, however, is not 
exclusive. We expect that a combination of both methods is a promising research 
direction to obtain the tightest tractable bound. 
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