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Abstract 

We introduce a novel algorithm, termed PPA (Performance Prediction 
Algorithm), that quantitatively measures the contributions of elements 
of a neural system to the tasks it performs. The algorithm identifies the 
neurons or areas which participate in a cognitive or behavioral task, given 
data about performance decrease in a small set of lesions. It also allows 
the accurate prediction of performances due to multi-element lesions. 
The effectiveness of the new algorithm is demonstrated in two models 
of recurrent neural networks with complex interactions among the ele­
ments. The algorithm is scalable and applicable to the analysis of large 
neural networks. Given the recent advances in reversible inactivation 
techniques, it has the potential to significantly contribute to the under­
standing of the organization of biological nervous systems, and to shed 
light on the long-lasting debate about local versus distributed computa­
tion in the brain. 

1 Introduction 

Even simple nervous systems are capable of performing multiple and unrelated tasks, often 
in parallel. Each task recruits some elements of the system (be it single neurons or cortical 
areas), and often the same element participates in several tasks. This poses a difficult chal­
lenge when one attempts to identify the roles of the network elements, and to assess their 
contributions to the different tasks. Assessing the importance of single neurons or cortical 
areas to specific tasks is usually achieved either by assessing the deficit in performance after 
a lesion of a specific area, or by recording the activity during behavior, assuming that ar­
eas which deviate from baseline activity are more important for the task performed. These 
classical methods suffer from two fundamental flaws: First, they do not take into account 
the probable case that there are complex interactions among elements in the system. E.g., 
if two neurons have a high degree of redundancy, lesioning of either one alone will not re­
veal its influence. Second, they are qualitative measures, lacking quantitative predictions. 



Moreover, the very nature of the contribution of a neural element is quite elusive and ill 
defined. In this paper we propose both a rigorous, operative definition for the neuron's 
contribution and a novel algorithm to measure it. 

Identifying the contributions of elements of a system to varying tasks is often used as a 
basis for claims concerning the degree of the distribution of computation in that system 
(e.g. [1]). The distributed representation approach hypothesizes that computation emerges 
from the interaction between many simple elements, and is supported by evidence that 
many elements are important in a given task [2, 3, 4]. The local representation hypothesis 
suggests that activity in single neurons represents specific concepts (the grandmother cell 
notion) or performs specific computations (see [5]). This question of distributed versus 
localized computation in nervous systems is fundamental and has attracted ample attention. 
However there seems to be a lack of a unifying definition for these terms [5]. The ability of 
the new algorithm suggested here, to quantify the contribution of elements to tasks, allows 
us to deduce both the distribution of the different tasks in the network and the degree of 
specialization of each neuron. 

We applied the Performance Prediction Algorithm (PPA) to two models of recurrent neu­
ral networks: The first model is a network hand-crafted to exhibit redundancy, feedback 
and modulatory effects. The second consists of evolved neurocontrollers for behaving au­
tonomous agents [6]. In both cases the algorithm results in measures which are highly 
consistent with what is qualitatively known a-priori about the models. The fact that these 
are recurrent networks, and not simple feed-forward ones, suggests that the algorithm can 
be used in many classes of neural systems which pose a difficult challenge for existing 
analysis tools. Moreover, the proposed algorithm is scalable and applicable to the analysis 
of large neural networks. It can thus make a major contribution to studying the organization 
of tasks in biological nervous systems as well as to the long-debated issue of local versus 
distributed computation in the brain. 

2 Indices of Contribution, Localization and Specialization 

2.1 The Contribution Matrix 

Assume a network (either natural or artificial) of N neurons performing a set of P different 
functional tasks. For any given task, we would like to find the contribution vector c = 
(Cl' ... , CN), where Ci is the contribution of neuron i to the task in question. We suggest a 
rigorous and operative definition for this contribution vector, and propose an algorithm for 
its computation. 

Suppose a set of neurons in the network is lesioned and the network then performs the 
specified task. The result of this experiment is described by the pair < m, Pm > where m 
is an incidence vector of length N, such that m(i) = 0 if neuron i was lesioned and 1 if 
it was intact. Pm is the peiformance of the network divided by the baseline case of a fully 
intact network. 

Let the pair < f, C >, where f is a smooth monotone non-decreasing l function and C 

a normalized column vector such that E~l ICil = 1, be the pair which minimizes the 
following error function 

1 ~ 2 E = 2N L)f(m. c) - Pm] . (1) 

{m} 

lIt is assumed that as more important elements are lesioned (m . c decreases), the performance 
(Pm) decreases, and hence the postulated monotonicity of f. 



This c will be taken as the contribution vector for the task tested, and the corresponding f 
will be called its adjoint performance prediction function. 

Given a configuration m of lesioned and intact neurons, the predicted performance of the 
network is the sum of the contribution values of the intact neurons (m . c), passed through 
the performance prediction function f. The contribution vector c accompanied by f is 
optimal in the sense that this predicted value minimizes the Mean Square Error relative to 
the real performance, over all possible lesion configurations. 

The computation of the contribution vectors is done separately for each task, using some 
small subset of all the 2N possible lesioning configurations. The training error Et is defined 
as in equation 1 but only averaging on the configurations present in the training set. 

The Performance Prediction Algorithm (PPA): 

• Step 1: Choose an initial normalized contribution vector c for the task. If there is 
no bias for a special initial choice, set all entries to random values. 

Repeat steps 2 and 3 until the error Et converges or a maximal number of steps 
has been reached: 

• Step 2: Compute f. Given the current c, perform isotonic regression [7] on the 
pairs < m . c,Pm > in the training set. Use a smoothing spline [8] on the result 
of the regression to obtain the new f . 

• Step 3: Compute c. Using the current f compute new c values by training a 
perceptron with input m, weights c and transfer function f. The output of the 
perceptron is exactly f(m . c), and the target output is Pm. Hence training the 
perceptron results in finding a new vector c, that given the current function f, 
minimizes the error Et on the training set. Finally re-normalize c. 

The output of the algorithm is thus a contribution value for every neuron, accompanied by 
a function, such that given any configuration of lesioned neurons, one can predict with high 
confidence the performance of the damaged network. Thus, the algorithm achieves two 
important goals: a) It identifies automatically the neurons or areas which participate in 
a cognitive or behavioral task. b) The function f predicts the result of multiple lesions, 
allowing for non linear combinations of the effects of single lesions 2 . 

The application of the PPA to all tasks defines a contribution matrix C, whose kth column 
(k = L.P) is the contribution vector computed using the above algorithm for task k, i.e. 
Cik is the contribution of neuron i to task k. 

2.2 Localization and Specialization 

Introducing the contribution matrix allows us to approach issues relating to the distribu­
tion of computation in a network in a quantitative manner. Here we suggest quantitative 
measures for localization of function and specialization of neurons. 

If a task is completely distributed in the network, the contributions of all neurons to that 
task should be identical (full equipotentiality [2]). Thus, we define the localization Lk 
of task k as a deviation from equipotentiality. Formally, Lk is the standard deviation of 
column k of the contribution matrix divided by the maximal possible standard deviation. 

L _ std(C*k) 
k - J(N _ 1)jN2 

(2) 

2Tbe computation of t , involving a simple perceptron-based function approximation, implies the 
immediate applicability of the PPA for large networks, given weB-behaved performance prediction 
functions. 
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Figure 1: Hand-crafted neural network: a) Architecture of the network. Solid lines are 
weights, all of strength 1. Dashed lines indicate modulatory effects. Neurons 1 through 6 
are spontaneously active (activity equals 1) under normal conditions. The performance of 
the network is taken to be the activity of neuron 10. b) The activation functions of the non­
spontaneous neurons. The x axis is the input field and the y axis is the resulting activity of 
the neuron. Neuron 8 has two activation functions. If both neurons 2 and 3 are switched on 
they activate a modulating effect on neuron 8 which switches its activation function from 
the inactive case to the active case. 

Note that Lk is in the range [0,1] where Lk = ° indicates full distribution and Lk = 1 
indicates localization of the task to one neuron alone. The degree of localization of function 
in the whole network, L, is the simple average of Lk over all tasks. Similarly, if neuron i is 
highly specialized for a certain task, Ci * will deviate strongly from a uniform distribution, 
and thus we define Si, the specialization of neuron i as 

(3) 

3 Results 

We tested the proposed index on two types of recurrent networks. We chose to study 
recurrent networks because they pose an especially difficult challenge, as the output units 
also participate in the computation, and in general complex interactions among elements 
may arise3 . We begin with a hand-crafted example containing redundancy, feedback and 
modulation, and continue with networks that emerge from an evolutionary process. The 
evolved networks are not hand-crafted but rather their structure emerges as an outcome of 
the selection pressure to successfully perform the tasks defined. Thus, we have no prior 
knowledge about their structure, yet they are tractable models to investigate. 

3.1 Hand-Crafted Example 

Figure 1 depicts a neural network we designed to include potential pitfalls for analysis 
procedures aimed at identifying important neurons of the system (see details in the cap­
tion). Figure 2(a) shows the contribution values computed by three methods applied to this 
network. The first estimation was computed as the correlation between the activity of the 

3In order to single out the role of output units in the computation, lesioning was performed by 
decoupling their activity from the rest of the network and not by knocking them out completely. 
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Figure 2: Results of the PPA: a) Contribution values obtained using three methods: The 
correlation of activity to performance, single neuron lesions, and the PPA. b) Predicted ver­
sus actual performance using c and its adjoint performance prediction function f obtained 
by the PPA. Insert: The shape of f. 

neuron and the performance of the network4 . To allow for comparison between methods 
these values were normalized to give a sum of 1. The second estimation was computed as 
the decrease in performance due to lesioning of single neurons. Finally, we used the PPA, 
training on a set of 64 examples. Note that as expected the activity correlation method 
assigns a high contribution value to neuron 9, even though it actually has no significance 
in determining the performance. Single lesions fail to detect the significance of neurons 
involved in redundant interactions (neurons 4 - 6). The PPA successfully identifies the 
underlying importance of all neurons in the network, even the subtle significance of the 
feedback from neuron 10. We used a small training set (64 out of 210 configurations) con­
taining lesions of either small (up to 20% chance for each neuron to be lesioned) or large 
(more than 90% chance of lesioning) degree. Convergence was achieved after 10 iterations. 

As opposed to the two other methods, the PPA not only identifies and quantifies the sig­
nificance of elements in the network, but also allows for the prediction of performances 
from multi-element lesions, even if they were absent from the training set. The predicted 
performance following a given configuration of lesioned neurons is given by f(m . c) as 
explained in section 2.1. Figure 2(b) depicts the predicted versus actual performances on a 
test set containing 230 configurations of varying degrees (0 - 100% chance of lesioning). 
The correlation between the predicted value and the actual one is 0.9978, corresponding 
to a mean prediction error of only 0.0007. In principle, the other methods do not give the 
possibility to predict the performance in any straightforward way, as is evident from the 
non-linear form of the performance prediction error (see insert of figure 2(b». The shape 
of the performance prediction function depends on the organization of the network, and 
can vary widely between different models (results not shown here). 

3.2 Evolved Neurocontrollers 

Using evolutionary simulations we developed autonomous agents controlled by fully recur­
rent artificial neural networks. High performance levels were attained by agents performing 
simple life-like tasks of foraging and navigation. Using various analysis tools we found a 
common structure of a command neuron switching the dynamics of the network between 

4Neuron 10 was omitted in this method of analysis since it is by definition in full correlation with 
the performance. 



radically different behavioral modes [6]. Although the command neuron mechanism was a 
robust phenomenon, the evolved networks did differ in the role other neurons performed. 
When only limited sensory information was available, the command neuron relied on feed­
back from the motor units. In other cases no such feedback was needed, but other neurons 
performed some auxiliary computation on the sensory input. We applied the PPA to the 
evolved neurocontrollers in order to test its capabilities in a system on which we have pre­
viously obtained qualitative understanding, yet is still relatively complex. 

Figure 3 depicts the contribution values of the neurons of three successful evolved neuro­
controllers obtained using the PPA. Figure 3(a) corresponds to a neurocontroller of an agent 
equipped with a position sensor (see [6] for details), which does not require any feedback 
from the motor units. As can be seen these motor units indeed receive contribution values 
of near zero. Figures 3(b) and 3(c) correspond to neurocontrollers who strongly relied on 
motor feedback for their memory mechanism to function properly. The algorithm easily 
identifies their significance. In all three cases the command neuron receives high values as 
expected. The performance prediction capabilities are extremely high, giving correlations 
of 0.9999, 0.9922 and 0.9967 for the three neurocontrollers, on a test set containing 100 
lesion configurations of mixed degrees (0 - 100% chance of lesioning). We also obtained 
the degree of localization of each network, as explained in section 2.2. The values are: 
0.56, 0.35 and 0.47 for the networks depicted in figures 3(a) 3(b) and 3(c) respectively. 
These values are in good agreement with the qualitative descriptions of the networks we 
have obtained using classical neuroscience tools [6]. 
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Figure 3: Contribution values of neurons in three evolved neurocontrollers: Neurons 
1-4 are motor neurons. eN is the command neuron that emerged spontaneously in all 
evolutionary runs. 

4 Discussion 

We have introduced a novel algorithm termed PPA (Performance Prediction Algorithm) to 
measure the contribution of neurons to the tasks that a neural network performs. These 
contributions allowed us to quantitatively define an index of the degree of localization of 
function in the network, as well as for task-specialization of the neurons. The algorithm 
uses data from performance measures of the network when different sets of neurons are 
lesioned. Theoretically, pathological cases can be devised where very large training sets 
are needed for correct estimation. However it is expected that many cases are well-behaved 
and will demonstrate behaviors similar to the models we have used as test beds, i.e. that 
a relatively small subset suffices as a training set. It is predicted that larger training sets 
containing different degrees of damage will be needed to achieve good results for systems 
with higher redundancy and complex interactions. We are currently working on studying 
the nature of the training set needed to achieve satisfying results, as this in itself may reveal 
information on the types of interactions between elements in the system. 



We have applied the algorithm to two types of artificial recurrent neural networks, and 
demonstrated that it results in agreement with our qualitative a-priori notions and with 
qualitative classical analysis methods. We have shown that estimation of the importance of 
system elements using simple activity measures and single lesions, may be misleading. The 
new PPA is more robust as it takes into account interactions of higher degrees. Moreover 
it serves as a powerful tool for predicting damage caused by multiple lesions, a feat that is 
difficult even when one can accurately estimate the contributions of single elements. The 
shape of the performance prediction function itself may also reveal important features of 
the organization of the network, e.g. its robustness to neuronal death. 

The prediction capabilities of the algorithm can be used for regularization of recurrent net­
works. Regularization in feed-forward networks has been shown to improve performance 
significantly, and algorithms have been suggested for effective pruning [9]. However, net­
works with feedback (e.g. Elman-like networks) pose a difficult problem, as it is hard 
to determine which elements should be pruned. As the PPA can be applied on the level 
of single synapses as well as single neurons, it suggests a natural algorithm for effective 
regularization, pruning the elements by order of their contribution values. 

Recently a large variety of reversible inactivation techniques (e.g. cooling) have emerged in 
neuroscience. These methods alleviate many of the problematic aspects of the classical le­
sion technique (ablation), enabling the acquisition of reliable data from multiple lesions of 
different configurations (for a review see [10]). It is most likely that a plethora of data will 
accumulate in the near future. The sensible integration of such data will require quantita­
tive methods, to complement the available qualitative ones. The promising results achieved 
with artificial networks and the potential scalability of the PPA lead us to believe that it 
will prove extremely useful in obtaining insights into the organization of natural nervous 
systems. 
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