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Abstract 

Low-dimensional representations are key to solving problems in high­
level vision, such as face compression and recognition. Factorial coding 
strategies for reducing the redundancy present in natural images on the 
basis of their second-order statistics have been successful in account­
ing for both psychophysical and neurophysiological properties of early 
vision. Class-specific representations are presumably formed later, at 
the higher-level stages of cortical processing. Here we show that when 
retinotopic factorial codes are derived for ensembles of natural objects, 
such as human faces, not only redundancy, but also dimensionality is re­
duced. We also show that objects are built from parts in a non-Gaussian 
fashion which allows these local-feature codes to have dimensionalities 
that are substantially lower than the respective Nyquist sampling rates. 

1 Introduction 

Sensory systems must take advantage of the statistical structure of their inputs in order to 
process them efficiently, both to suppress noise and to generate compact representations of 
seemingly complex data. Redundancy reduction has been proposed as a design principle 
for such systems (Barlow, 1961); in the context of Information Theory (Shannon, 1948), 
it leads to factorial codes (Barlow et aI., 1989; Linsker, 1988). When only the second­
order statistics are available for a given sensory ensemble, the maximum entropy initial 
assumption (Jaynes, 1982) leads to a multi-dimensional Gaussian model of the probability 
density; then, the Karhunen-Loeve Transform (KLT) provides a family of equally efficient 
factorial codes. In the context of the ensemble of natural images, with a specific model for 
the noise, these codes have been able to account quantitatively for the contrast sensitivity 
of human subjects in all signal-to-noise regimes (Atick and Redlich, 1992). Moreover, 
when the receptive fields are constrained to have retinotopic organization, their circularly 
symmetric, center-surround opponent structure is recovered (Atick and Redlich, 1992). 

Although redundancy can be reduced in the ensemble of natural images, because its spec­
trum obeys a power law (Ruderman and Bialek, 1994), there is no natural cutoff, and the 
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dimensionality of the "retinal" code is the same as that of the input. This situation is not 
typical. When KLT representations are derived for ensembles of natural objects, such as 
human faces (Sirovich and Kirby, 1987), the factorial codes in the resulting families are 
naturally low-dimensional (Penev, 1998; Penev and Sirovich, 2000). Moreover, when a 
retinotopic organization is imposed, in a procedure called Local Feature Analysis (LFA), 
the resulting feed-forward receptive fields are a dense set of detectors for the local features 
from which the objects are built (Penev and Atick, 1996). LFA has also been used to derive 
local features for the natural-objects ensembles of: 3D surfaces of human heads (Penev and 
Atick, 1996), and 2D images of pedestrians (Poggio and Girosi, 1998). 

Parts-based representations of object classes, including faces, have been recently derived 
by Non-negative Matrix Factorization (NMF) (Lee and Seung, 1999), "biologically" moti­
vated by the hypothesis that neural systems are incapable of representing negative values. 
As has already been pointed out (Mel, 1999), this hypothesis is incompatible with a wealth 
of reliably documented neural phenomena, such as center-surround receptive field organi­
zation, excitation and inhibition, and ON/OFF visual-pathway processing, among others. 

Here we demonstrate that when parts-based representations of natural objects are derived 
by redundancy reduction constrained by retinotopy (Penev and Atick, 1996), the result­
ing sparse-distributed, local-feature representations not only are factorial, but also are of 
dimensionalities substantially lower than the respective Nyquist sampling rates. 

2 Compact Global Factorial Codes of Natural Objects 

A properly registered and normalized object will be represented by the receptor readout 
values ¢>(x), where {x} is a grid that contains V receptors . An ensemble ofT objects will 
be denoted by {¢>t (X)}tET. 1 Briefly (see, e.g., Sirovich and Kirby, 1987, for details), when 
T > V, its Karhunen-Loeve Tran,lform (KLT) representation is given by 

v 
¢>t(x) = L a~O'r1Pr(x) (1) 

r=1 

where {an (arranged in non-increasing order) is the eigen.lpectrum of the spatial and tem­
poral correlation matrices, and {1Pr (x)} and {a~} are their respective orthonormal eigen­
vectors. The KLT representation of an arbitrary, possibly out-of-sample, object ¢>(x) is 
given by the joint activation 

(2) 

of the set of global analysis filters {O';I1Pr(x)}, which are indexed with r, and whose 
outputs, {ar } , are decorrelated.2 In the context of the ensemble of natural images, the 
"whitening" by the factor 0';1 has been found to account for the contrast sensitivity of hu­
man subjects (Atick and Redlich, 1992). When the output dimensionality is set to N < V, 
the reconstruction-optimal in the amount of preserved signal power-and the respective 
error utilize the global synthesis filters {O'r1Pr (x)}, and are given by 

N 

¢>ISc = Lara r1Pr and ¢>JJ'" = ¢> - ¢>ISc. (3) 
r=1 

iPor the illustrations in this study, 2T = T = 11254 frontal-pose facial images were registered 
and normalized to a grid with V = 64 x 60 = 3840 pixels as previously described (Penev and 
Sirovich, 2000). 

2This is certainly true for in-sample objects, since {a~} are orthonormal (1). Por out-of-sample 
objects, there is always the issue whether the size of the training sample, T , is sufficient to ensure 
proper generalization. The current ensemble has been found to generalize well in the regime for r 
that is explored here (Penev and Sirovich, 2000). 
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Figure 1: Successive reconstructions, errors, and local entropy densities. For the indicated global 
dimensionalities, N, the reconstructions cP'iV" (3) of an out-oj-sample example are shown in the top 
row, and the respective residual errors, cP'Nr , in the middle row (the first two errors are amplified 5 x 
and the rest-20x). The respective entropy densities ON (5), are shown in the bottom, low-pass 
filtered with Fr ,N = u; / (u; + UN 2) (cf. Fig. 3), and scaled adaptively at each N to fill the available 
dynamic range. 

With the standard multidimensional Gaussian model for the probability density P[4>] 
(Moghaddam and Pentland, 1997; Penev, 1998), the information content of the reconstruc­
tion (3)-equal to the optimal-code length (Shannon, 1948; Barlow, I96I)-is 

N 

-logP[4>rJC] ex Z)ar I
2 . (4) 

r=l 

Because of the normalization by fIr in (2), all KLT coefficients have unit variance 0); the 
model (4) is spherically symmetric, and all filters contribute equally to the entropy of the 
code. What criterion, then, could guide dimensionality reduction? 

Following (Atick and Redlich, 1992), when noise is taken into account, N ~ 400 has 
been found as an estimate of the global dimensionality for the ensemble frontal-pose faces 
(Penev and Sirovich, 2000). This conclusion is reinforced by the perceptual quality of 
the successive reconstructions and errors, shown in Fig. I-the face-specific information 
crosses over from the error to the reconstruction at N ~ 400, but not much earlier. 

3 Representation of Objects in Terms of Local Features 

It was shown in Section 2 that when redundancy reduction on the basis of the second-order 
statistics is applied to ensembles of natural objects, the resulting factorial code is compact 
(low dimensional), in contrast with the "retinal" code, which preserves the dimensionality 
of the input (Atick and Redlich, 1992). Also, the filters in the beginning of the hierarchy 
(Fig. 2) correspond to intuitively understandable sources of variability. Nevertheless, this 
compact code has some problems. The learned receptive fields, shown in Fig. 2, are global, 
in contrast with the local, retinotopic organization of sensory processing, found throughout 
most of the visual system. Moreover, although the eigenmodes in the regime r E [100,400] 
are clearly necessary to preserve the object-specific information (Fig. 1), their respective 
global filters (Fig. 2) are ripply, non-intuitive, and resemble the hierarchy of sine/cosine 
modes of the translationally invariant ensemble of natural images. 

In order to cope with these problems in the context of object ensembles, analogously to the 
local factorial retinal code (Atick and Redlich, 1992), Local Feature Analysis (LFA) has 
been developed (Penev and Atick, 1996; Penev, 1998). LFA uses a set of local analysisfil-



Figure 2: The basis-vector hierarchy of the global factorial code. Shown are the first 14 eigenvectors, 
and the ones with indices: 21,41; and 60,94, 155,250,500, 1000,2000,3840 (bottom row). 
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Figure 3: Local feature detectors and residual correlations of their outputs. centers: The typical face 
("pI, Fig. 2) is marked with the central positions of five of the feature detectors. a-e: For those 
choises of x"', the local filters K(x", , y) (6) are shown in the top row, and the residual correlations of 
their respective outputs with the outputs of all the rest, P(x", , y) (9), in the bottom. In principle, the 
cutoff at r = N, which effectively implements a low-pass filter, should not be as sharp as in (6)-it 
has been shown that the human contrast sensitivity is described well by a smooth cutoff of the type 
Fr = u;/(u; + n 2 ), where n 2 is a mearure of the effective noise power (Atick and Redlich, 1992). 

For this figure, K(x,y) = L~=I"pr(X):~"pT(Y)' with N = 400 andn = U400. 

ters, K(x, y), whose outputs are topographically indexed with the grid variable x (cf. eq. 2) 

L'. 1 " O(x) = V ~ K(x,y)¢(y) (5) 
y 

and are as decorrelated as possible. For a given dimensionality, or width of the band, of 

the compact code, N, maximal decorrelation can be achieved with K(x,y) = K~)(x, y) 
from the following topographic family of kernels 

N 

K~)(x,y) ~ L '¢r(x)u;:n'¢r(Y)· (6) 
r=l 

For the ensemble of natural scenes, which is translationally and rotationally invariant, the 
local filters (6) are center-surround receptive fields (Atick and Redlich, 1992). For object 
ensembles, the process of construction-categorization-breaks a number of symmetries 
and shifts the higher-order statistics into second-order, where they are conveniently ex­
posed to robust estimation and, subsequently, to redundancy reduction. The resulting local 
receptive fields, some of which are shown in the top row of Fig. 3, turn out to be feature 
detectors that are optimally tuned to the structures that appear at their respective centers. 
Although the local factorial code does not exhibit the problems discussed earlier, it has 



representational properties that are equivalent to those of the global factorial code. The 

reconstruction and error are identical, but now utilize the local synthesis filers KJ;l) (6) 
N 

¢W(x) = Larur'lj;r(X) = ~ L KJ;l) (x, y)O(y) (7) 
r=l y 

and the information (4) is expressed in terms of O(x), which therefore provides the local 
information density 

N 1 
-logP[¢~CllX L lar l2 = V L ION(XW· 

r=l x 

(8) 

4 Greedy Sparsification of the Smooth Local Information Density 

In the case of natural images, N = V, and the outputs of the local filters are completely 
decorrelated (A tick and Redlich, 1992). For natural objects, the code is low-dimensional 
(N < V), and residual correlations, some shown in the bottom row of Fig. 3, are unavoid­
able; they are generally given by the projector to the sub band 

PN(X,y) ~ ~ LO~(x)O~(y) == K~)(x,y) (9) 
t 

and are as close to 8(x, y) as possible (Penev and Atick, 1996). The smoothness of the local 
information density is controlled by the width of the band, as shown in Fig. 1. Since O(x) 
is band limited, it can generally be reconstructed exactly from a subsampling over a limited 

set of grid points M ~ {xm}, from the IMI variables {Om ~ O(Xm)}x~EM' as long as 
this density is critically sampled (1M I = N). When 1M I < N, the maximum-likelihood 
interpolation in the context of the probability model (8) is given by 

IMI IMI 
orec(x) = L Omam(x) with am(x) = L Q-l mnPn(x) (10) 

m=l n=l 

where Pm(x) ~ P(xm,x), and Q ~ PIM is the restriction ofP on the set of reference 
points, with Qnm = Pn(xm) (Penev, 1998). When O(x) is critically sampled (IMI = N) 
on a regular grid, V -t 00, and the eigenmodes (1) are sines and cosines, then (10) is the 
familiar Nyquist interpolation formula. In order to improve numerical stability, irregular 
subsampling has been proposed (Penev and Atick, 1996), by a data-driven greedy algo­
rithm that successively enlarges the support of the subsampling at the n-th step, M(n), by 
optimizing for the residual entropy error, Ilo~rr (x) 112 = IIO(x) - o~ec (x) 112. 

The LFA code is sparse. In a recurrent neural-network implementation (Penev, 1998) the 
dense output O(x) of the feed-forward receptive fields, K(x,y), has been interpreted as 
sub-threshold activation, which is predictively suppressed through lateral inhibition with 
weights Pm (x), by the set of active units, at {xm}.3 

5 Dimensionality Reduction Beyond the Nyquist Sampling Rate 

The efficient allocation of resources by the greedy sparsification is evident in Fig. 4A-B; 
the most prominent features are picked up first (Fig. 4A), and only a handful of active units 
are used to describe each individual local feature (Fig. 4B). Moreover, when the dimension­
ality of the representation is constrained, evidently from Fig. 4C-F, the sparse local code 
has a much better perceptual quality of the reconstruction than the compact global one. 

3This type of sparseness is not to be confused with "high kurtosis of the output distribution;" in 
LFA, the non-active units are completely shut down, rather than "only weakly activated." 
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Figure 4: Efficiency of the sparse allocation of resources. (A): the locations of the first 25 active 
units, M(25), of the sparsification with N = 220, n = 0"400 (see Fig. 3), of the example in Fig. 1 
and in (C), are overlayed on ¢(x) and numbered sequentially. (B): the locations of the active 
units in M(64) are overlayed on O(x). For ¢(x) in (C) (cf. Fig. 1), reconstructions with a fixed 
dimensionality, 64, of its deviation from the typical face (-1/;1 in Fig. 2), are shown in the top row of 
(D, E, F), and the respective errors, in the bottom row. (D): reconstruction from the sparsification 
{O(Xm)}X=EM (10) with M = M(64) from (B). (E): reconstruction from the first 64 global 
coefficients (3), N = 64. (F): reconstruction from a subsampling of ¢(x) on a regular 8 x 8 grid 
(64 samples). The errors in (D) and (E) are magnified 5 x ; in (F), 1 x . 
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Figure 5: The relationship between the dimensionalities of the global and the local factorial codes. 
The entropy of the KLT reconstruction (8) for the out-of-sample example (cf. Fig. 1) is plotted in 
(A) with a solid line as a function of the global dimensionality, N. The entropies of the LFA re­
constructions (10) are shown with dashed lines parametrically of the number of active units 1M I for 
N E {600, 450, 300, 220, 110,64, 32}, from top to bottom, respectively. The ratios of the residual, 
110~rr 11 2, and the total, 110112 (8), information are plotted in (B) with dashed lines parametrically of 
1M II N, for the same values of N; a true exponential dependence is plotted with a solid line. 

This is an interesting observation. Although the global code is optimal in the amount of 
captured energy, the greedy sparsification optimizes the amount of captured information, 
which has been shown to be the biologically relevant measure, at least in the retinal case 
(Atick and Redlich, 1992). In order to quantify the relationship between the local dimen­
sionality of the representation and the amount of information it captures, rate-distortion 
curves are shown in Fig. 5. As expected (4), each degree of freedom in the global code con­
tributes approximately equally to the information content. On the other hand, the first few 
local terms in (10) pull off a sizeable fraction of the total information, with only a modest 
increase thereafter (Fig. 5A). In all regimes for N, the residual information decreases ap­
proximately exponentially with increasing dimensionality ratio IMI/N (Fig. 5B); 90% of 
the information is contained in a representation with local dimensionality, 25%-30% of the 
respective global one; 99%, with 45%-50%. This exponential decrease has been shown 
to be incompatible with the expectation based on the Gaussian (4), or any other spherical, 
assumption (Penev, 1999). Hence, the LFA representation, by learning the building blocks 
of natural objects-the local features-reduces not only redundancy, but also dimensional­
ity. Because LFA captures aspects of the sparse, non-Gaussian structure of natural-object 
ensembles, it preserves practically all of the information, while allocating resources sub­
stantially below the Nyquist sampling rate. 



6 Discussion 

Here we have shown that, for ensembles of natural objects, with low-dimensional global 
factorial representations, sparsification of the local information density allows under­
sampling which results in a substantial additional dimensionality reduction. Although more 
general ensembles, such as those of natural scenes and natural sound, have full-dimensional 
global representations, the sensory processing of both visual and auditory signals happens 
in a multi-scale, bandpass fashion. Preliminary results (Penev and Iordanov, 1999) sug­
gest that sparsification within the subbands is possible beyond the respective Nyquist rate; 
hence, when the sparse dimensionalities of the sub bands are added together, the result is 
aggregate dimensionality reduction, already at the initial stages of sensory processing. 
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