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Abstract 

Virtual reality (VR) provides immersive and controllable experimen­
tal environments. It expands the bounds of possible evoked potential 
(EP) experiments by providing complex, dynamic environments in or­
der to study cognition without sacrificing environmental control. VR 
also serves as a safe dynamic testbed for brain-computer .interface (BCl) 
research. However, there has been some concern about detecting EP sig­
nals in a complex VR environment. This paper shows that EPs exist at 
red, green, and yellow stop lights in a virtual driving environment. Ex­
perimental results show the existence of the P3 EP at "go" and "stop" 
lights and the contingent negative variation (CNY) EP at "slow down" 
lights. In order to test the feasibility of on-line recognition in VR, we 
looked at recognizing the P3 EP at red stop tights and the absence of this 
signal at yellow slow down lights. Recognition results show that the P3 
may successfully be used to control the brakes of a VR car at stop lights. 

1 Introduction 

The controllability of VR makes it an excellent candidate for use in studying cognition. It 
expands the bounds of possible evoked potential (EP) experiments by providing complex, 
dynamic environments in order to study decision making in cognition without sacrificing 
environmental control. We have created a flexible system for real-time EEG collection and 
analysis from within virtual environments. 

The ability of our system to give quick feedback enables it to be used in brain-computer in­
terface (BCl) research, which is aimed at helping individuals with severe motor deficits 
to become more independent. Recent BCl work has shown the feasibility of on-line 
averaging and biofeedback methods in order to choose characters or move a cursor on 
a computer screen with up to 95% accuracy while sitting still and concentrating on 
the screen [McFarland et aI., 1993; Pfurtscheller et al., 1996; Vaughn et al., 1996; 
Farwell and Donchin, 1988]. Our focus is to dramatically extend the BCl by allowing 
evoked potentials to propel the user through alternate virtual environments. For example, a 
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Figure 1: (Left) An individual demonstrates driving in the modified go cart. (Right) A typical 
stoplight scene in the virtual environment. 

user could choose a virtual living room from a menu of rooms, navigate to the living room 
automatically in the head-mounted display, and then choose to turn on the stereo. 

As shown in [Farwell and Donchin, 1988], the P3 EP may be used for a brain-computer 
interface that picks characters on a computer monitor. Discovered by [Chapman and Brag­
don, 1964; Sutton et aI., 1965] and extensively studied (see [Polich, 1998] for a literature 
review), the P3 is a positive waveform occurring approximately 300-500 ms after an in­
frequent task-relevant stimulus. We show that requiring subjects to stop or go at virtual 
traffic lights elicits this EP. The contingent negative variation (CNV), an EP that happens 
preceding an expected stimulus, occurs at slow down lights. 

In order to test the feasibility of on-line recognition in the noisy VR environment, we 
recognized the P3 EP at red stop lights and the lack of this signal at yellow slow down 
lights. Results using a robust Kalman filter for off-line recognition indicate that the car 
may be stopped reliably with an average accuracy of 84.5% while the on-line average for 
car halting is 83%. 

2 The Stoplight Experiments 

The first experiment we performed in the virtual driving environment shows that a P3 EP 
is obtained when subjects stop or go at a virtual light and that a CNV occurs when subjects 
see a slow down light. Since all subjects received the same light colors for the slow down, 
go, and stop conditions we then performed a second experiment with different light colors 
in order to disambiguate light color from the occurrence of the P3 and CNV. 

Previous P3 research has concentrated primarily on static environments such as the contin­
uous performance task [Rosvold et aI., 1956]. In the visual continuous performance task 
(VCPT), static images are flashed on a screen and the subject is told to press a button when 
a rare stimulus occurs or to count the number of occurrences of a rare stimulus. This makes 
the stimulus both rare and task relevant in order to evoke a P3. As an example, given red 
and yellow stoplight pictures, a P3 should occur if the red picture is less frequent than the 
yellow and subjects are told to press a mouse button only during the red light. We assumed 
a similar response would occur in a VR driving world if certain lights were infrequent and 
subjects were told to stop or go at them. This differs from the VCPT in two important 
ways: 

1. In the VCPT subjects sit passively and respond to stimuli. In the driving task, 
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subjects control when the stimuli appear by where they drive in the virtual world. 

2. Since subjects are actively involved and fully immersed in the virtual world, they 
make more eye and head movements. The movement amount can be reduced by 
a particular experimental paradigm, but it can not be eliminated. 

The first difference makes the VR environment a more natural experimental environment. 
The second difference means that subjects create more data artifacts with extra movement. 
We handled these artifacts by first manipulating the experimental environment to reduce 
movements where important stimulus events occurred. This meant that all stoplights were 
placed at the end of straight stretches of road in order to avoid the artifacts caused by turning 
a corner. For our on-line recognition, we then used the eye movement reduction technique 
described in [Semlitsch et al., 1986] in order to subtract a combination of the remaining 
eye and head movement artifact. 

2.1 Experimental Setup 

All subjects used a modified go cart in order to control the virtual car (see Figure 1). The 
virtual reality interface is rendered on a Silicon Graphics Onyx machine with 4 proces­
sors and an Infinite Reality Graphics Engine. The environment is presented to the subject 
through a head-mounted display (HMD). Since scalp EEG recordings are measured in mi­
crovolts, electrical signals may easily interfere during an experiment. We tested the effects 
of wearing a VR4 HMD containing an ISCAN eye tracker and discovered that the noise 
levels inside of the VR helmet were comparable to noise levels while watching a laptop 
screen [Bayliss and Ballard, 1998]. 

A trigger pulse containing information about the color of the light was sent to the EEG 
acquisition system whenever a light changed. While an epoch size from -100 ms to 1 sec 
was specified, the data was recorded continuously. Information about head position as well 
as gas, braking, and steering position were saved to an external file. Eight electrodes sites 
(FZ, CZ, CPZ, PZ, P3, P4, as well as 2 vertical EOG channels) were arranged on the heads 
of seven subjects with a linked mastoid reference. Electrode impedances were between 
2 and 5 kohms for all subjects. Subjects ranged in age from 19 to 52 and most had no 
previous experiences in a virtual environment. The EEG signal was amplified using Grass 
amplifiers with an analog bandwidth from 0.1 to 100 Hz. Signals were then digitized at a 
rate of 500 Hz and stored to a computer. 

2.2 Ordinary Traffic Light Color Experiment 

Five subjects were instructed to slow down on yellow lights, stop for red lights, and go for 
green lights. These are normal traffic light colors. Subjects were allowed to drive in the 
environment before the experiment to get used to driving in VR. 

In order to make slow down lights more frequent, all stoplights turned to the slow down 
color when subjects were further than 30 meters aways from them. When the subject 
drove closer than 30 meters the light then turned to either the go or stop color with equal 
probability. The rest of the light sequence followed normal stoplights with the stop light 
turning to the go light after 3 seconds and the go light not changing. 

We calculated the grand averages over red, green, and yellow light trials (see Figure 2a). 
Epochs affected by artifact were ignored in the averages in order to make sure that any 
existing movements were not causing a P3-like signal. Results show that a P3 EP occurs 
for both red and green lights. Back averaging from the green/red lights to the yellow light 
shows the existence of a CNV starting at approximately 2 seconds before the light changes 
to red or green. 
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Figure 2: a) Grand averages for the red stop, green go, and yellow slow down lights. b) Grand 
averages for the yellow stop, red go, and green slow down lights. All slow down lights have been 
back-averaged from the occurrence of the go/stop light in order to show the existence of a CNY. 

2.3 Alternative Traffic Light Colors 

The P3 is related to task relevance and should not be related to color, but color needed to 
be disambiguated as the source of the P3 in the experiment. We had two subjects slow 
down at green lights, stop at yellow lights, and go at red lights. In order to get used to this 
combination of colors, subjects were allowed to drive in the town before the experiment. 

The grand averages for each light color were calculated in the same manner as the averages 
above and are shown in Figure 2b. As expected, a P3 signal existed for the stop condition 
and a CNV for the slow down condition. The go condition P3 was much noisier for these 
two subjects, although a slight P3-like signal is still visible. 

3 Single Trial Recognition Results 

While averages show the existence of the P3 EP at red stop lights and the absence of such 
at yellow slow down lights, we needed to discover if the signal was clean enough for single 
trial recognition as the quick feedback needed by a BCI depends on quick recognition. 
While there were three light conditions to recognize, there were only two distinct kinds of 
evoked potentials. We chose to recognize the difference between the P3 and the CNV since 
their averages are very different. Recognizing the difference between two kinds of EPs 
gives us the ability to use a BCI in any task that can be performed using a series of binary 
decisions. We tried three methods for classification of the P3 EP: correlation, independent 
component analysis (ICA), and a robust Kalman filter. 

Approximately, 90 slow down yellow light and 45 stop red light trials from each subject 
were classified. The reason we allowed a yellow light bias to enter recognition is because 
the yellow light currently represents an unimportant event in the environment. In a real 
BCI unimportant events are likely to occur more than user-directed actions, making this 
bias justifiable. 
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Table 1: Recognition Results (p < 0.01) 

Correlation %Correct ICA %Correct Robust Kalman Filter %Correct 
Subjects Red Yel Total Red Yel Total Red Yel Total 
S1 81 51 64 76 77 77 55 86 77 
S2 95 63 73 86 88 87 82 94 90 
S3 89 56 66 72 87 82 74 85 81 
S4 81 60 67 73 69 71 65 91 82 
S5 63 66 65 65 79 74 78 92 87 

Table 2: Recognition Results for Return Subjects 

Robust K-Filter % Correct 
Subjects Red Yel Total 
S4 73 90 85 
S5 67 87 80 

As expected, the data obtained while driving contained artifacts, but in an on-line BCI 
these artifacts must be reduced in order to make sure that what the recognition algorithm is 
recognizing is not an artifact such as eye movement. In order to reduce these artifacts, we 
performed the on-line linear regression technique described in [Semlitsch et aI. , 1986] in 
order to subtract a combination of eye and head movement artifact. 

In order to create a baseline from which to compare the performance of other algorithms, 
we calculated the correlation of all sample trials with the red and yellow light averages 
from each subject's maximal P3 electrode site using the following formula: 

correlation = 
(sample * aveT)/(11 sample II * II ave II) (1) 

where sample and ave are both 1 x 500 vectors representing the trial epochs and light 
averages (respectively). We used the whole trial epoch for recognition because it yielded 
better recognition than just the time area around the P3. If the highest correlation of a trial 
epoch with the red and yellow averages was greater than 0.0, then the signal was classified 
as that type of signal. If both averages correlated negatively with the single trial, then the 
trial was counted as a yellow light signal. As can be seen in Table 1, the correct signal 
identification of red lights was extremely high while the yellow light identification pulled 
the results down. This may be explained by the greater variance of the yellow light epochs. 
Correlations in general were poor with typical correlations around 0.25. 

ICA has successfully been used in order to minimize artifacts in EEG data [Jung et at. , 
1997; Vigario, 1997] and has also proven useful in separating P3 component data from an 
averaged waveform [Makeig et aI., 1997]. The next experiment used ICA in order to try 
to separate the background EEG signal from the P3 signal. Independent component anal­
ysis (lCA) assumes that n EEG data channels x are a linear combination of n statistically 
independent signals s : 

x= As (2) 

where x and s are n x 1 vectors. We used the matlab package mentioned in [Makeig et aI. , 
1997] with default learning values, which finds a matrix W by stochastic gradient descent. 
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This matrix W performs component separation. All data was sphered in order to speed 
convergence time. 

After training the W matrix, the source channel showing the closest P3-like signal (using 
correlation with the average) for the red light average data was chosen as the signal with 
which to correlate individual epochs. The trained W matrix was also used to find the 
sources of the yellow light average. The red and yellow light responses were then correlated 
with individual epoch sources in the manner of the first experiment. 

The third experiment used the robust Kalman filter framework formulated by Rao [Rao, 
1998]. The Kalman filter assumes a linear model similar to the one ofICA in equation 2, 
but assumes the EEG output x is the observable output of a generative or measurement 
matrix A and an internal state vector s of Gaussian sources. The output may also have an 
additional noise component n, a Gaussian stochastic noise process with mean zero and a 
covariance matrix given by ~ = E[nn Tj, leading to the model expression: x = As + n. In 
order to find the most optimal value of s, a weighted least-squares criterion is formulated: 

(3) 

where s follows a Gaussian distribution with mean s and covariance M. Minimizing this 
criterion by setting ~; = 0 and using the substitution N = (AT~-lU + M-1)-1 yields 
the Kalman filter equation, which is basically equal to the old estimate plus the Kalman 
gain times the residual error. 

(4) 

In an analogous manner, the measurement matrix A may be estimated (learned) if one 
assumes the physical relationships encoded by the measurement matrix are relatively stable. 
The learning rule for the measurement matrix may be derived in a manner similar to the 
rule for the internal state vector. In addition, a decay term is often needed in order to avoid 
overfitting the data set. See [Rao, 1998] for details. 

In our experiments both the internal state matrix s and the measurement matrix A were 
learned by training them on the average red light signal and the average yellow light signal. 
The signal is measured from the start of the trial which is known since it is triggered by the 
light change. We used a Kalman gain of 0.6 and a decay of 0.3. After training, the signal 
estimate for each epoch is correlated with the red and yellow light signal estimates in the 
manner of experiment 1. We made the Kalman filter statistically robust by ignoring parts 
of the EEG signal that fell outside a standard deviation of 1.0 from the training signals. 

The overall recognition results in Table 1 suggest that both the robust Kalman filter and ICA 
have a statistically significant advantage over correlation (p < 0.01). The robust Kalman 
filter has a very small advantage over ICA (not statistically significant). 

In order to look at the reliability of the best algorithm and its ability to be used on-line 
two of the Subjects (S4 and SS) returned for another VR driving session. In these sessions 
the brakes of the driving simulator were controlled by the robust Kalman filter recognition 
algorithm for red stop and yellow slow down lights. Green lights were ignored. The results 
of this session using the Robust Kalman Filter trained on the first session are shown in 
Table 2. The recognition numbers for red and yellow lights between the two sessions were 
compared using correlation. Red light scores between the sessions correlated fairly highly 
- 0.82 for S4 and 0.69 for SS. The yellow light scores between sessions correlated poorly 
with both S4 and SS at approximately -0.1. This indicates that the yellow light epochs tend 
to correlate poorly with each other due to the lack of a large component such as the P3 to 
tie them together. 
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4 Future Work 

This paper showed the viability of recognizing the P3 EP in a VR environment. We plan 
to allow the P3 EP to propel the user through alternate virtual rooms through the use of 
various binary decisions. In order to improve recognition for the BCI we need to experi­
ment with a wider and more complex variety of recognition algorithms. Our most recent 
work has shown a dependence between the human computer interface used in the BCI and 
recognition. We would like to explore this dependence in order to improve recognition as 
much as possible. 
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