
Effects of Spatial and Temporal Contiguity on 
the Acquisition of Spatial Information 

Thea B. Ghiselli-Crippa and Paul W. Munro 
Department of Information Science and Telecommunications 

University of Pittsburgh 
Pittsburgh, PA 15260 

tbgst@sis.pitt.edu, munro@sis.pitt.edu 

Abstract 

Spatial information comes in two forms: direct spatial information (for 
example, retinal position) and indirect temporal contiguity information, 
since objects encountered sequentially are in general spatially close. The 
acquisition of spatial information by a neural network is investigated 
here. Given a spatial layout of several objects, networks are trained on a 
prediction task. Networks using temporal sequences with no direct spa­
tial information are found to develop internal representations that show 
distances correlated with distances in the external layout. The influence 
of spatial information is analyzed by providing direct spatial information 
to the system during training that is either consistent with the layout or 
inconsistent with it. This approach allows examination of the relative 
contributions of spatial and temporal contiguity. 

1 Introduction 

Spatial information is acquired by a process of exploration that is fundamentally tempo­
ral, whether it be on a small scale, such as scanning a picture, or on a larger one, such as 
physically navigating through a building, a neighborhood, or a city. Continuous scanning 
of an environment causes locations that are spatially close to have a tendency to occur in 
temporal proximity to one another. Thus, a temporal associative mechanism (such as a 
Hebb rule) can be used in conjunction with continuous exploration to capture the spatial 
structure of the environment [1]. However, the actual process of building a cognitive map 
need not rely solely on temporal associations, since some spatial information is encoded in 
the sensory array (position on the retina and proprioceptive feedback). Laboratory studies 
show different types of interaction between the relative contributions of temporal and spa­
tial contiguities to the formation of an internal representation of space. While Clayton and 
Habibi's [2] series of recognition priming experiments indicates that priming is controlled 
only by temporal associations, in the work of McNamara et al. [3] priming in recogni­
tion is observed only when space and time are both contiguous. In addition, Curiel and 
Radvansky's [4] work shows that the effects of spatial and temporal contiguity depend on 
whether location or identity information is emphasized during learning. Moreover, other 
experiments ([3]) also show how the effects clearly depend on the task and can be quite 
different if an explicitly spatial task is used (e.g., additive effects in location judgments). 
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Figure 1: Network architectures: temporal-only network (left); spatio-temporal network 
with spatial units part of the input representation (center); spatio-temporal network with 
spatial units part of the output representation (right) . 

2 Network architectures 

The goal of the work presented in this paper is to study the structure of the internal rep­
resentations that emerge from the integration of temporal and spatial associations. An 
encoder-like network architecture is used (see Figure 1), with a set of N input units and a 
set of N output units representing N nodes on a 2-dimensional graph. A set of H units is 
used for the hidden layer. To include space in the learning process, additional spatial units 
are included in the network architecture. These units provide a representation of the spatial 
information directly available during the learning/scanning process. In the simulations de­
scribed in this paper, two units are used and are chosen to represent the (x, y) coordinates of 
the nodes in the graph. The spatial units can be included as part of the input representation 
or as part of the output representation (see Figure 1, center and right panels): both choices 
are used in the experiments, to investigate whether the spatial information could better ben­
efit training as an input or as an output [5]. In the second case, the relative contribution of 
the spatial information can be directly manipulated by introducing weighting factors in the 
cost function being minimized. A two-term cost function is used, with a cross-entropy term 
for the N label units and a squared error term for the 2 coordinate units, 

ri indicates the actual output of unit i and ti its desired output. The relative influence of 
the spatial information is controlled by the coefficients A and B. 

3 Learning tasks 

The left panel of Figure 2 shows an example of the type of layout used; the effective 
layout used in the study consists of N = 28 nodes. For each node, a set of neighboring 
nodes is defined, chosen on the basis of how an observer might scan the layout to learn the 
node labels and their (spatial) relationships; in Figure 2, the neighborhood relationships are 
represented by lines connecting neighboring nodes. From any node in the layout, the only 
allowed transitions are those to a neighbor, thus defining the set of node pairs used to train 
the network (66 pairs out of C(28, 2) = 378 possible pairs). In addition, the probability 
of occurrence of a particular transition is computed as a function of the distance to the 
corresponding neighbor. It is then possible to generate a sequence of visits to the network 
nodes, aimed at replicating the scanning process of a human observer studying the layout. 
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Figure 2: Example of a layout (left) and its permuted version (right). Links represent 
allowed transitions. A larger layout of 28 units was used in the simulations. 

The basic learning task is similar to the grammar learning task of Servan-Schreiber et al. 
[6] and to the neighborhood mapping task described in [1] and is used to associate each of 
the N nodes on the graph and its (x, y) coordinates with the probability distribution of the 
transitions to its neighboring nodes. The mapping can be learned directly, by associating 
each node with the probability distribution of the transitions to all its neighbors: in this 
case, batch learning is used as the method of choice for learning the mapping. On the 
other hand, the mapping can be learned indirectly, by associating each node with itself 
and one of its neighbors, with online learning being the method of choice in this case; 
the neighbor chosen at each iteration is defined by the sequence of visits generated on 
the basis of the transition probabilities. Batch learning was chosen because it generally 
converges more smoothly and more quickly than online learning and gives qualitatively 
similar results. While the task and network architecture described in [1] allowed only 
for temporal association learning, in this study both temporal and spatial associations are 
learned simultaneously, thanks to the presence of the spatial units. However, the temporal­
only (T-only) case, which has no spatial units, is included in the simulations performed 
for this study, to provide a benchmark for the evaluation of the results obtained with the 
spatio-temporal (S-T) networks. 

The task described above allows the network to learn neighborhood relationships for which 
spatial and temporal associations provide consistent information, that is, nodes experienced 
contiguously in time (as defined by the sequence) are also contiguous in space (being spa­
tial neighbors). To tease apart the relative contributions of space and time, the task is kept 
the same, but the data employed for training the network is modified: the same layout is 
used to generate the temporal sequence, but the x , y coordinates of the nodes are randomly 
permuted (see right panel of Figure 2). If the permuted layout is then scanned following the 
same sequence of node visits used in the original version, the net effect is that the temporal 
associations remain the same, but the spatial associations change so that temporally neigh­
boring nodes can now be spatially close or distant: the spatial associations are no longer 
consistent with the temporal associations. As Figure 4 illustrates, the training pairs (filled 
circles) all correspond to short distances in the original layout, but can have a distance 
anywhere in the allowable range in the permuted layout. Since the temporal and spatial 
distances were consistent in the original layout, the original spatial distance can be used 
as an indicator of temporal distance and Figure 4 can be interpreted as a plot of temporal 
distance vs. spatial distance for the permuted layout. 

The simulations described in the following include three experimental conditions: temporal 
only (no direct spatial information available); space and time consistent (the spatial coor­
dinates and the temporal sequence are from the same layout); space and time inconsistent 
(the spatial coordinates and the temporal sequence are from different layouts). 
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Hidden unit representations are compared using Euclidean distance (cosine and inner prod­
uct measures give consistent results); the internal representation distances are also used to 
compute their correlation with Euclidean distances between nodes in the layout (original 
and permuted). The correlations increase with the number of hidden units for values of 
H between 5 and 10 and then gradually taper off for values greater than 10. The results 
presented in the remainder of the paper all pertain to networks trained with H = 20 and 
with hidden units using a tanh transfer function; all the results pertaining to S-T networks 
refer to networks with 2 spatial output units and cost function coefficients A = 0.625 and 
B = 6.25. 

4 Results 

Figure 3 provides a combined view of the results from all three experiments. The left panel 
illustrates the evolution of the correlation between internal representation distances and 
layout (original and permuted) distances. The right panel shows the distributions of the 
correlations at the end of training (1000 epochs). The first general result is that, when spa­
tial information is available and consistent with the temporal information (original layout), 
the correlation between hidden unit distances and layout distances is consistently better 
than the correlation obtained in the case of temporal associations alone. The second gen­
eral result is that, when spatial information is available but not consistent with the temporal 
information (permuted layout), the correlation between hidden unit distances and original 
layout distances (which represent temporal distances) is similar to that obtained in the case 
of temporal associations alone, except for the initial transient. When the correlation is com­
puted with respect to the permuted layout distances, its value peaks early during training 
and then decreases rapidly, to reach an asymptotic value well below the other three cases. 
This behavior is illustrated in the box plots in the right panel of Figure 3, which report the 
distribution of correlation values at the end of training. 

4.1 Temporal-only vs. spatio-temporal 

As a first step in this study, the effects of adding spatial information to the basic temporal 
associations used to train the network can be examined. Since the learning task is the same 
for both the T-only and the S-T networks except for the absence or presence of spatial 
information during training, the differences observed can be attributed to the additional 
spatial information available to the S-T networks. The higher correlation between internal 
representation distances and original layout distances obtained when spatial information is 
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Figure 3: Evolution of correlation during training (0 - 1000 epochs) (left). Distributions of 
correlations at the end of training (1000 epochs) (right). 
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Figure 4: Distances in the original layout 
(x) vs_ distances in the permuted layout 
(y)_ The 66 training pairs are identified by 
filled circles_ 
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Figure 5: Similarities (Euclidean distances) 
between internal representations developed 
by a S-T network (after 300 epochs)_ Figure 
4 projects the data points onto the x, y plane_ 

available (see Figure 3) is apparent also when the evolution of the internal representations 
is examined_ As Figure 6 illustrates, the presence of spatial information results in better 
generalization for the pattern pairs outside the training set While the distances between 
training pairs are mapped to similar distances in hidden unit space for both the T-only and 
the S-T networks, the T-only network tends to cluster the non-training pairs into a narrow 
band of distances in hidden unit space. In the case of the S-T network instead, the hidden 
unit distances between non-training pairs are spread out over a wider range and tend to 
reflect the original layout distances. 

4.2 Permuted layout 

As described above, with the permuted layout it is possible to decouple the spatial and 
temporal contributions and therefore study the effects of each. A comprehensive view of 
the results at a particular point during training (300 epochs) is presented in Figure 5, where 
the x, y plane represents temporal distance vs. spatial distance (see also Figure 4) and the z 
axis represents the similarity between hidden unit representations. The figure also includes 
a quadratic regression surface fitted to the data points. The coefficients in the equation of 
the surface provide a quantitative measure of the relative contributions of spatial (ds) and 
temporal distances (dT ) to the similarity between hidden unit representations (dHU ): 

(2) 

In general, after the transient observed in early training (see Figure 3), the largest and most 
significant coefficients are found for dT and (dT?, indicating a stronger dependence of 
dHU on temporal distance than on spatial distance. 

The results illustrated in Figure 5 represent the situation at a particular point during training 
(300 epochs). Similar plots can be generated for different points during training, to study 
the evolution of the internal representations. A different view of the evolution process is 
provided by Figure 7, in which the data points are projected onto the x,Z plane (top panel) 
and the y,z plane (bottom panel) at four different times during training. In the top panel, 
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Figure 6: Internal representation distances vs. original layout distances: S-T network (top) 
vs. T-only network (bottom). The training pairs are identified by filled circles. The presence 
of spatial information results in better generalization for the pairs outside the training set. 

the internal representation distances are plotted as a function of temporal distance (i.e., the 
spatial distance from the original layout), while in the bottom panel they are plotted as a 
function of spatial distance (from the permuted layout). The higher asymptotic correlation 
between internal representation distances and temporal distances, as opposed to spatial 
distances (see Figure 3), is apparent also from the examination of the evolutionary plots, 
which show an asymptotic behavior with respect to temporal distances (see Figure 7, top 
panel) very similar to the T-only case (see Figure 6, bottom panel) . 

5 Discussion 

The first general conclusion that can be drawn from the examination of the results described 
in the previous section is that, when the spatial information is available and consistent with 
the temporal information (original layout), the similarity structure of the hidden unit rep­
resentations is closer to the structure of the original layout than that obtained by using 
temporal associations alone. The second general conclusion is that, when the spatial in­
formation is available but not consistent with the temporal information (permuted layout), 
the similarity structure of the hidden unit representations seems to correspond to temporal 
more than spatial proximity. Figures 5 and 7 both indicate that temporal associations take 
precedence over spatial associations. This result is in agreement with the results described 
in [1], showing how temporal associations (plus some high-level constraints) significantly 
contribute to the internal representation of global spatial information. However, spatial in­
formation certainly is very beneficial to the (temporal) acquisition of a layout, as proven by 
the results obtained with the S-T network vs. the T-only network. 

In terms of the model presented in this paper, the results illustrated in Figures 5 and 7 can 
be compared with the experimental data reported for recognition priming ([2], [3], [4]), 
with distance between internal representations corresponding to reaction time. The results 
of our model indicate that distances in both the spatially far and spatially close condition 
appear to be consistently shorter for the training pairs (temporally close) than for the non­
training pairs (temporally distant), highlighting a strong temporal effect consistent with the 
data reported in [2] and [4] (for spatially far pairs) and in [3] (only for the spatially close 
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Figure 7: Internal representation distances vs. temporal distances (top) and vs. spatial 
distances (bottom) for a S-T network (permuted layout). The training pairs are identified 
by filled circles. The asymptotic behavior with respect to temporal distances (top panel) is 
similar to the T-only condition. The bottom panel indicates a weak dependence on spatial 
distances. 

case). For the training pairs (temporally close), slightly shorter distances are obtained for 
spatially close pairs vs. spatially far pairs; this result does not provide support for the 
experimental data reported in either [3] (strong spatial effect) or [2] (no spatial effect). 
For the non-training pairs (temporally distant), long distances are found throughout, with 
no strong dependence on spatial distance; this effect is consistent with all the reported 
experimental data. Further simulations and statistical analyses are necessary for a more 
conclusive comparison with the experimental data. 
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Abstract 

The encoding accuracy of a population of stochastically spiking neurons 
is studied for different distributions of their tuning widths. The situation 
of identical radially symmetric receptive fields for all neurons, which 
is usually considered in the literature, turns out to be disadvantageous 
from an information-theoretic point of view. Both a variability of tun­
ing widths and a fragmentation of the neural population into specialized 
subpopulations improve the encoding accuracy. 

1 Introduction 

The topic of neuronal tuning properties and their functional significance has focused much 
attention in the last decades. However, neither empirical findings nor theoretical consider­
ations have yielded a unified picture of optimal neural encoding strategies given a sensory 
or motor task. More specifically, the question as to whether narrow tuning or broad tuning 
is advantageous for the representation of a set of stimulus features is still being discussed. 
Empirically, both situations are encountered: small receptive fields whose diameter is less 
than one degree can, for example, be found in the human retina [7] , and large receptive 
fields up to 1800 in diameter occur in the visual system of tongue-projecting salamanders 
[10]. On the theoretical side, arguments have been put forward for small [8] as well as for 
large [5, 1,9, 3, 13] receptive fields. 

In the last years, several approaches have been made to calculate the encoding accuracy 
of a neural population as a function of receptive field size [5, 1,9,3, 13]. It has turned 
out that for a firing rate coding, large receptive fields are advantageous provided that D 2: 
3 stimulus features are encoded [9, 13]. For binary neurons, large receptive fields are 
advantageous also for D = 2 [5,3]. 

However, so far only radially symmetric tuning curves have been considered. For neural 
populations which lack this symmetry, the situation may be very different. Here we study 
the encoding accuracy of a popUlation of stochastically spiking neurons. A Fisher infor­
mation analysis performed on different distributions of tunings widths will indeed reveal a 
much more detailed picture of neural encoding strategies. 
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2 Model 

Consider a D-dimensional stimulus space, X. A stimulus is characterized by a position 
x = (Xl, ... , XD) E X, where the value of feature i, Xi (i = 1, ... , D), is measured 
relative to the total range of values in the i-th dimension such that it is dimensionless. 
Information about the stimulus is encoded by a popUlation of N stochastically spiking 
neurons. They are assumed to have independent spike generation mechanisms such that the 
joint probability distribution for observing n = (n(l), ... ,n(k), ... ,n(N») spikes within a 
time interval T, Ps(n; x), can be written in the form 

N 

Ps(n;x) = II ps(k) (n(k); x), (1) 
k=l 

where Ps(k) (n(k); x) is the single-neuron probability distribution of the number of observed 
spikes given the stimulus at position x. Note that (1) does not exclude a correlation of the 
neural firing rates, i.e., the neurons may have common input or even share the same tuning 
function. 

The firing rates depend on the stimulus via the local values of the tuning functions, such that 
Ps(k) (n(k); x) can be written in the form Ps(k) (n(k); x) = S (n(k), j(k) (x), T), where the 

tuning function of neuron k, j(k) (x), gives its mean firing rate in response to the stimulus 
at position x. We assume here a form of the tuning function that is not necessarily radially 
symmetric, 

f(') (x) = F4> (t (Xi ~~r) )2) =, F¢ ( e( ')2) , (2) 

where e(k) = (c~k), ... , c};») is the center of the tuning curve of neuron k, O'~k) is its 

tuning width in the i-th dimension, dk)2 := (Xi - c~k»)2/O'ik)2 for i = 1, ... ,D, and 

~(k)2 := ~~k)2 + ... + ~~)2. F > 0 denotes the maximal firing rate of the neurons, which 
requires that maxz~o fj>(z) = 1. 

We assume that the tuning widths O't), . .. ,O'~) of each neuron k are drawn from a distri­
bution PO' (0'1, ... ,O'D). For a population oftuning functions with centers e(l), ... , e(N), a 

density 1}(x) is introduced according to 1}(x) := L:~=l 8(x - e(k»). 

The encoding accuracy can be quantified by the Fisher information matrix, J, which is 
defined as 

(3) 

where E[ . .. J denotes the expectation value over the probability distribution P(n; x) [2]. 
The Fisher information yields a lower bound on the expected error of an unbiased estimator 
that retrieves the stimulus x from the noisy neural activity (Cramer-Rao inequality) [2]. The 
minimal estimation error for the i-th feature Xi, ti,min, is given by t;,min = (J- 1 )ii which 
reduces to t;,min = 1/ Jii(X) if J is diagonal. 

We shall now derive a general expression for the popUlation Fisher information. In the 
next chapter, several cases and their consequences for neural encoding strategies will be 
discussed. 

For model neuron (k), the Fisher information (3) reduces to 

(k) . (k) (k) _ 1 ( (k)2 ) (k) (k) 
Jij (X'O'I ""'O'D) - (k) (k)Aq.. ~ ,F,T ~i ~j , 

O'i O'j 

(4) 
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where the dependence on the tuning widths is indicated by the list of arguments. The 
function A.p depends on the shape of the tuning function and is given in [13]. The in­
dependence assumption (1) implies that the population Fisher information is the sum of 
h ·b· f h . d··d I ",N J(k)( (k) (k)) U7 t e contn utlOns 0 t e III IVI ua neurons, L.Jk=1 ij x; 0"1 , ... ,0" D . ne now define 

a population Fisher information which is averaged over the distribution of tuning widths 
Pt:T(0"1, . .. ,O"D): 

N 

(Jij (x)) 17 = L / d0"1 . .. dO"D Pt:T(0"1,· .. , O"D) Ji~k) (x; 0"1, · .. , O"D) . (5) 
k= 1 

Introducing the density of tuning curves, 1J(x), into (5) and assuming a constant distri­
bution, 1J(x) == 1J == const., one obtains the result that the population Fisher information 
becomes independentofx and that the off-diagonal elements of J vanish [13] . The average 
population Fisher information then becomes 

D ( ) / flt:l 0"1) ~ 
(Jij)t:T = 1J K.p F, r, D \ 0"; 17 Vij, (6) 

where K.p depends on the geometry of the tuning curves and is defined in [13]. 

3 Results 

In this section, we consider different distributions of tuning widths in (6) and discuss ad­
vantageous and disadvantageous strategies for obtaining a high representational accuracy 
in the neural population. 

Radially symmetric tuning curves. For radially symmetric tuning curves of width a, 
the tuning-width distribution reads 

D 

Pt:T(O"l, .. . ,O"D) = II O(O"i -a); 
i=l 

see Fig. 1 a for a schematic visualization of the arrangement of the tuning widths for the 
case D = 2. The average population Fisher information (6) for i = j becomes 

(Jii)t:T = 1JDK.p(F, r, D) aD - 2 , (7) 

a result already obtained by Zhang and Sejnowski [13]. Equation (7) basically shows that 
the minimal estimation error increases with a for D = 1, that it does not depend on a for 
D = 2, and that it decreases as a increases for D 2: 3. We shall discuss the relevance of 
this case below. 

Identical tuning curves without radial symmetry. Next we discuss tuning curves which 
are identical but not radially symmetric; the tuning-width distribution for this case is 

D 

Pt:T(0"1, . .. ,O"D) = II O(O"i - ad, 
i=l 

where ai denotes the fixed width in dimension i. For i = j, the average population Fisher 
information (6) reduces to [11,4] 

flD -
( ) 1=1 0"1 

(Jii)t:T = 1JDK.p F, r, D -2 . 
O"i 

(8) 
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Figure 1: Visualization of different distributions of 
tuning widths for D = 2. (a) Radially symmetric tun­
ing curves. The dot indicates a fixed (j, while the diag­
onalline symbolizes a variation in (j discussed in [13]. 
(b) Identical tuning curves which are not radially sym­
metric. (c) Tuning widths uniformly distributed within 
a small rectangle. (d) Two sUbpopulations each of 
which is narrowly tuned in one dimension and broadly 
tuned in the other direction. 

Equation (8) contains (7) as a special case. From (8) it becomes immediately clear that the 
expected minimal square encoding error for the i-th stimulus feature, €~ min = 1/ (Jii(X))u, 

depends on i, i. e., the population specializes in certain features. The error obtained in 
dimension i thereby depends on the tuning widths in all dimensions. 

Which encoding strategy is optimal for a population whose task it is to encode a single 
feature, say feature i, with high accuracy while not caring about the other dimensions? In 
order to answer this question, we re-write (8) in terms of receptive field overlap. 

For the tuning functions f(k) (x) encountered empirically, large values ofthe single-neuron 
Fisher information (4) are typically restricted to a region around the center of the tuning 
function, c(k). The fraction p({3) of the Fisher information that falls into a region ED 
J~(k)2 ~ (3 aroundc(k) is given by 

f D "",D (k) ( ) d X L....i=l Jii X 

p({3) := E; dD 2:~ J~~) ( ) 
X t=l u X 

X 

j3 

f d~ ~D+l At/>(e, F, T) 
o 
00 

f d~ ~D+l At/>(~2, F, T) 
o 

(9) 

where the index (k) was dropped because the tuning curves are assumed to have iden­

tical shapes. Equation (9) allows the definition of an effective receptive field, RF~~, 
inside of which neuron k conveys a major fraction Po of Fisher information, RF~~ := 

{xl~ ~ {3o} , where (3o is chosen such that p({3o) = Po. The Fisher information a 

neuron k carries is small unless x E RF~~. This has the consequence that a fixed stimulus 
x is actually encoded only by a subpopulation of neurons. The point x in stimulus space is 
covered by 

27rD/ 2({30)D D _ 
Ncode:= 1] Dr(D/2) }1 (Jj 

(10) 

receptive fields. With the help of (10), the average population Fisher information (8) can 
be re-written as 

(11) 

Equation (11) can be interpreted as follows: We assume that the population of neurons 
encodes stimulus dimension i accurately, while all other dimensions are of secondary im­
portance. The average population Fisher information for dimension i, (Jii ) u, is determined 
by the tuning width in dimension i, (ji, and by the size of the active subpopulation, Ncode ' 

There is a tradeoff between these quantities. On the one hand, the encoding error can be 
decreased by decreasing (ji, which enhances the Fisher information carried by each single 



Neural Representation of Multi-Dimensional Stimuli 119 

neuron. Decreasing ai, on the other hand, will also shrink the active subpopulation via 
(10). This impairs the encoding accuracy, because the stimulus position is evaluated from 
the activity of fewer neurons. If (11) is valid due to a sufficient receptive field overlap, 
Ncode can be increased by increasing the tuning widths, aj, in all other dimensions j i- i. 
This effect is illustrated in Fig. 2 for D = 2. 

X2 X2 

c=:> 
II"\.. , \ 

U 
x2, s x2,s 

Figure 2: Encoding strategy for a stimulus characterized by parameters Xl,s and X2,s' Fea­
ture Xl is to be encoded accurately. Effective receptive field shapes are indicated for both 
populations. If neurons are narrowly tuned in X2 (left), the active population (solid) is 
small (here: Ncode = 3). Broadly tuned receptive fields for X2 (right) yield a much larger 
population (here: Ncode = 27) thus increasing the encoding accuracy. 

It shall be noted that although a narrow tuning width ai is advantageous, the limit ai ---t 0 
yields a bad representation. For narrowly tuned cells, gaps appear between the receptive 
fields: The condition 17(X) == const. breaks down, and (6) is no longer valid. A more 
detailed calculation shows that the encoding error diverges as ai --* 0 [4]. The fact that 
the encoding error decreases for both narrow tuning and broad tuning - due to (11) - proves 
the existence of an optimal tuning width, An example is given in Fig. 3a. 
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Figure 3: (a) Example for the encoding behavior with narrow tuning curves arranged on 
a regular lattice of dimension D = 1 (grid spacing ~). Tuning curves are Gaussian, and 
neural firing is modeled as a Poisson process, Dots indicate the minimal square encoding 
error averaged over a uniform distribution of stimuli, (E~in)' as a function ofa. The mini­
mum is clearly visible. The dotted line shows the corresponding approximation according 
to (8). The inset shows Gaussian tuning curves of optimal width, aopt ~ 0.4~. (b) 9D()..) 
as a function of ).. for different values of D. 
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Narrow distribution of tuning curves. In order to study the effects of encoding the 
stimulus with distributed tuning widths instead of identical tuning widths as in the previous 
cases, we now consider the distribution 

D 

Pu(lT1,'" ,lTD) = g :i e [lTi - (O'i - i)] e [(O'i + i) -lTi] , (12) 

where e denotes the Heaviside step function. Equation (12) describes a uniform distri­
bution in a D-dimensional cuboid of size b1, ... , b D around (0'1, .. . 0' D); cf. Fig. 1 c. A 
straightforward calculation shows that in this case, the average population Fisher informa­
tion (6) for i = j becomes 

( n~l 0'1 { 1 (bi ) 2 [( bi ) 4] } (Jii)u = f/DKtj) F, T, D) O'~ 1 + 12 O'i + 0 O'i . (13) 

A comparison with (8) yields the astonishing result that an increase in bi results in an 
increase in the i-th diagonal element of the average population Fisher information matrix 
and thus in an improvement in the encoding of the i-th stimulus feature, while the encoding 
in dimensions j :f. i is not affected. Correspondingly, the total encoding error can be 
decreased by increasing an arbitrary number of edge lengths of the cube. The encoding by 
a population with a variability in the tuning curve geometries as described is more precise 
than that by a uniform population. This is true/or arbitrary D. Zhang and Sejnowski [13] 
consider the more artificial situation of a correlated variability ofthe tuning widths: tuning 
curves are always assumed to be radially symmetric. This is indicated by the diagonal 
line in Fig. 1 a. A distribution of tuning widths restricted to this subset yields an average 
population Fisher information ex: (O'D-2) and does not improve the encoding for D = 2 or 
D=3. 

Fragmentation into D subpopulations. Finally, we study a family of distributions of 
tuning widths which also yields a lower minimal encoding error than the uniform popula­
tion. Let the density of tuning curves be given by 

1 D 
Pu(lT1,'" ,lTD) = D L 6(lTi - AO') II 6(lTj - 0'), 

i=l j¥-i 
(14) 

where A > O. For A = 1, the population is uniform as in (7). For A :f. 1, the population 
is split up into D subpopulations; in subpopulation i, lTi is modified while lTj == 0' for 
j :f. i. See Fig. Id for an example. The diagonal elements ofthe average population Fisher 
information are 

-D-2 {1 + (D - I)A2 } (Jii)u = f/DKtj)(F, T, D) IT DA ' (15) 

where the term in brackets will be abbreviated as 9D(A). (Jii)u does not depend on i in 
this case because of the symmetry in the sUbpopulations. Equation (15) and the uniform 
case (7) differ by 9D(A) which will now be discussed. Figure 3b shows 9D(A) for different 
values of D. For A = 1, 9D(A) = 1 and (7) is recovered as expected. 9D(A) = 1 
also holds for A = 1/ (D - 1) < 1: narrowing one tuning width in each subpopulation 
will at first decrease the resolution provided D 2: 3; this is due to the fact that Ncode is 
decreased. For A < 1/(D - 1), however, 9D(A) > 1, and the resolution exceeds (Jii)u in 
(7) because each neuron in the i-th subpopulation carries a high Fisher information in the 
i-th dimension. D = 2 is a special case where no impairment of encoding occurs because 
the effect of a decrease of Ncode is less pronounced. Interestingly, an increase in A also 
yields an improvement in the encoding accuracy. This is a combined effect resulting from 
an increase in Ncode on the one hand and the existence of D subpopulations, D - 1 of 
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which maintain their tuning widths in each dimension on the other hand. The discussion 
of 9D(>") leads to the following encoding strategy. For small >.., (Jii)u increases rapidly, 
which suggests a fragmentation of the population into D subpopulations each of which 
encodes one feature with high accuracy, i.e., one tuning width in each subpopulation is 
small whereas the remaining tuning widths are broad. Like in the case discussed above, the 
theoretical limit of this method is a breakdown of the approximation of TJ == const. and the 
validity of (6) due to insufficient receptive field overlap. 

4 Discussion and Outlook 

We have discussed the effects of a variation of the tuning widths on the encoding accuracy 
obtained by a population of stochastically spiking neurons. The question of an optimal 
tuning strategy has turned out to be more complicated than previously assumed. More 
specifically, the case which focused most attention in the literature - radially symmetric 
receptive fields [5, 1,9, 3, 13] - yields a worse encoding accuracy than most other cases we 
have studied: uniform populations with tuning curves which are not radially symmetric; 
distributions of tuning curves around some symmetric or non-symmetric tuning curve; and 
the fragmentation of the population into D subpopulations each of which is specialized in 
one stimulus feature. 

In a next step, the theoretical results will be compared to empirical data on encoding prop­
erties of neural popUlations. One aspect is the existence of sensory maps which consist 
of neural subpopulations with characteristic tuning properties for the features which are 
represented. For example, receptive fields of auditory neurons in the midbrain of the barn 
owl have elongated shapes [6]. A second aspect concerns the short-term dynamics of re­
ceptive fields. Using single-unit recordings in anaesthetized cats, Worgotter et al. [12] 
observed changes in receptive field size taking place in 50-lOOms. Our findings suggest 
that these dynamics alter the resolution obtained for the corresponding stimulus features. 
The observed effect may therefore realize a mechanism of an adaptable selective signal 
processing. 
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