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Abstract 

This paper examines the role of biological constraints in the human audi­
tory localization process. A psychophysical and neural system modeling 
approach was undertaken in which performance comparisons between 
competing models and a human subject explore the relevant biologi­
cally plausible "realism constraints". The directional acoustical cues, 
upon which sound localization is based, were derived from the human 
subject's head-related transfer functions (HRTFs). Sound stimuli were 
generated by convolving bandpass noise with the HRTFs and were pre­
sented to both the subject and the model. The input stimuli to the model 
was processed using the Auditory Image Model of cochlear processing. 
The cochlear data was then analyzed by a time-delay neural network 
which integrated temporal and spectral information to determine the spa­
tial location of the sound source. The combined cochlear model and 
neural network provided a system model of the sound localization pro­
cess. Human-like localization performance was qualitatively achieved 
for broadband and bandpass stimuli when the model architecture incor­
porated frequency division (or tonotopicity), and was trained using vari­
able bandwidth and center-frequency sounds. 

1 Introduction 

The ability to accurately estimate the location of a sound source has obvious evolutionary 
advantages in terms of avoiding predators and finding prey. Indeed, humans are very accu­
rate in their ability to localize broadband sounds. There has been a considerable amount of 
psychoacoustical research into the auditory processes involved in human sound localization 
(recent review [1]). Furthermore, numerous models of the human and animal sound local­
ization process have been proposed (recent reviews [2,3]). However, there still remains a 
large gap between the psychophysical and the model explanations. Principal congruence 
between the two approaches exists for localization performance under restricted conditions, 
such as for narrowband sounds where spectral integration is not required, or for restricted 
regions of space. Unfortunately, there is no existing computational model that accounts 
well for human sound localization performance for a wide-range of sounds (e.g., vary­
ing in bandwidth and center-frequency). Furthermore, the biological constraints pertinent 
to sound localization have generally not been explored by these models. These include 
the spectral resolution of the auditory system in terms of the number and bandwidth of 
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frequency channels and the role of tonotopic processing. In addition, the perfonnance re­
quirements of such a system are substantial and involve, for example, the accomodation of 
spectrally complex sounds, the robustness to irregularity in the sound source spectrum, and 
the channel based structure of spatial coding as evidenced by auditory spatial after-effects 
[4]. The crux of the matter is the notion that "biologically-likely realism", if built into a 
model, provides for a better understanding of the underlying processes. 

This work attempts to bridge part of this gap between the modeling and psychophysics. It 
describes the development and use (for the first time, to the authors ' knowledge) of a time­
delay neural network model that integrates both spectral and temporal cues for auditory 
sound localization and compares the perfonnance of such a model with the corresponding 
human psychophysical evidence. 

2 Sound Localization 

The sound localization perfonnance of a nonnal hearing human subject was tested using 
stimuli consisting of three different band-passed sounds: (1) a low-passed sound (300 -
2000 Hz) (2) a high-passed sound (2000 - 14000 Hz) and (3) a broadband sound (300 -
14000 Hz). These frequency bands respectively cover conditions in which either temporal 
cues, spectral cues, or both dominate the localization process (see [1]). The subject per­
fonned five localization trials for each sound condition, each with 76 test locations evenly 
distributed about the subject's head. The detailed methods used in free-field sound local­
ization can be found in [5]. A short summary is presented below. 

2.1 Sound Localization Task 

Human sound localization experiments were carried out in a darkened anechoic cham­
ber. Free-field sound stimuli were presented from a loudspeaker carried on a semicircular 
robotic ann. These stimuli consisted of "fresh" white Gaussian noise appropriately band­
passed for each trial. The robotic ann allowed for placement of the speaker at almost any 
location on the surface of an imaginary sphere, one meter in radius, centered on the sub­
ject's head. The subject indicated the location of the sound source by pointing his nose in 
the perceived direction of the sound. The subject's head orientation was monitored using 
an electromagnetic sensor system (Polhemus, Inc.). 

2.2 Measurement and Validation of Outer Ear Acoustical Filtering 

The cues for sound localization depend not only upon the spectral and temporal proper­
ties of the sound stimulus, but also on the acoustical properties of the individual's outer 
ears. It is generally accepted that the relevant acoustical cues (i.e., the interaural time dif­
ference, ITO; interaurallevel difference, ILD; and spectral cues) to a sound's location in 
the free-field are described by the head-related transfer function (HRTF) which is typically 
represented by a finite-length impulse response (FIR) filter [1]. Sounds filtered with the 
HRTF should be localizable when played over ear-phones which bypass the acoustical fil­
tering of the outer ear. The illusion of free-field sounds using head-phones is known as 
virtual auditory space (VAS). 

Thus in order to incorporate outer ear filtering into the modelling process, measurements 
of the subject's HRTFs were carried out in the anechoic chamber. The measurements were 
made for both ears simultaneously using a ''blocked ear" technique [1]. 393 measurements 
were made at locations evenly distributed on the sphere. In order to establish that the 
HRTFs appropriately indicated the direction of a sound source the subject repeated the 
localization task as above with the stimulus presented in VAS. 
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2.3 Human Sound Localization Performance 

The sound localization performance of the human subject in three different stimulus con­
ditions (broadband, high-pass, low-pass) was examined in both the free-field and in vir­
tual auditory space. Comparisons between the two (using correlational statistics, data not 
shown, but see [3]) across all sound conditions demonstrated their equivalence. Thus the 
measured HRTFs were highly effective. 

Localization data across all three sound conditions (single trial VAS data shown in Fig. la) 
shows that the subject performed well in both the broadband and high-pass sound condi­
tions and rather poorly in the low-pass condition, which is consistent with other studies [6]. 
The data is illustrated using spherical localization plots which well demonstrates the global 
distribution of localization responses. Given the large qualitative differences in the data 
sets presented below, this visual method of analysis was sufficient for evaluating the com­
peting models. For each condition, the target and response locations are shown for both the 
left (L) and right (R) hemispheres of space. It is clear that in the low-pass condition, the 
subject demonstrated gross mislocalizations with the responses clustering toward the lower 
and frontal hemispheres. The gross mislocalizations correspond mainly to the traditional 
cone of confusion errors [6]. 

3 Localization Model 

The sound localization model consisted of two basic system components: (1) a modi­
fied version of the physiological Auditory Image Model [7] which simulates the spectro­
temporal characteristics of peripheral auditory processing, and (2) the computational archi­
tecture of a time-delay neural network. The sounds presented to the model were filtered 
using the sUbject's HRTFs in exactly the same manner as was used in producing VAS. 
Therefore, the modeling results can be compared with human localization performance on 
an individual basis. 

The modeling process can be broken down into four stages. In the first stage a sound 
stimulus was generated with specific band-pass characteristics. The sound stimulus was 
then filtered with the subject's right and left ear HRTFs to render an auditory stimulus 
originating from a particular location in space. The auditory stimulus was then processed 
by the Auditory Image Model (AIM) to generate a neural activity profile that simulates 
the output of the inner hair cells in the organ of Corti and indicates the spiking probability 
of auditory nerve fibers. Finally, in the fourth and last stage, a time-delay neural network 
(TDNN) computed the spatial direction of the sound input based on the distribution of 
neural activity calculated by AIM. 

A detailed presentation of the modeling process can be found in [3], although a brief sum­
mary is presented here. The distribution of cochlear filters across frequency in AIM was 
chosen such that the minimum center frequency was 300 Hz and the maximum center fre­
quency was 14 kHz with 31 filters essentially equally spaced on a logarithmic scale. In 
order to fully describe a computational layer of the TDNN, four characteristic numbers 
must be specified: (l) the number of neurons; (2) the kernel length, a number which de­
termines the size of the current layer's time-window in terms of the number of time-steps 
of the previous layer; (3) the kernel width, a number which specifies how many neurons 
in the previous layer with which there are actual connections; and (4) the undersampling 
factor, a number describing the multiplicative factor by which the current layer's time-step 
interval is increased from the previous layer's. Using this nomenclature, the architecture 
of the different layers of one TDNN is summarized in Table 1, with the smallest time-step 
being 0.15 ms. The exact connection arrangement of the network is described in the next 
section. 
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Table I: The Architecture of the TDNN. 

Layer Neurons Kernel Length Kernel Width Undersampling 
Input 
Hidden I 
Hidden 2 
Output 

62 
50 15 6 2 
28 10 4,5,6 2 
393 4 28 1 

The spatial location of a sound source was encoded by the network as a distributed response 
with the peak occurring at the output neuron representing the target location of the input 
sound. The output response would then decay away in the fonn of a two-dimensional 
Gaussian as one moves to neurons further away from the target location. This derives from 
the well-established paradigm that the nervous system uses overlapping receptive fields to 
encode properties of the physical world. 

3.1 Networks with Frequency Division and Tonotopicity 

The major auditory brainstem nuclei demonstrate substantial frequency division within 
their structure. The tonotopic organization of the primary auditory nerve fibers that in­
nervate the cochlea carries forward to the brainstem's auditory nuclei. This arrangement 
is described as a tonotopic organization. Despite this fact and to our knowledge, no pre­
vious network model for sound localization incorporates such frequency division within 
its architecture. Typically (e.g., [8]) all of the neurons in the first computational layer are 
fully connected to all of the input cochlear frequency channels. In this work, different ar­
chitectures were examined with varying amounts of frequency division imposed upon the 
network structure. The network with the architecture described above had its network con­
nections constrained by frequency in a tonotopic like arrangement. The 31 input cochlear 
frequency channels for each ear were split into ten overlapping groups consisting generally 
of six contiguous frequency channels. There were five neurons in the first hidden layer for 
each group of input channels. The kernel widths of these neurons were set, not to the total 
number of frequency channels in the input layer, but only to the six contiguous frequency 
channels defining the group. Infonnation across the different groups of frequency channels 
was progressively integrated in the higher layers of the network. 

3.2 Network Training 

Sounds with different center-frequency and bandwidth were used for training the networks. 
In one particular training paradigm, the center-frequency and bandwidth of the noise were 
chosen randomly. The center-frequency was chosen using a unifonn probability distri­
bution on a logarithmic scale that was similar to the physiological distribution of output 
frequency channels from AIM. In this manner, each frequency region was trained equally 
based on the density of neurons in that frequency region. During training, the error back­
propagation algorithm was used with a summed squared error measure. It is a natural 
feature of the learning rule that a given neuron's weights are only updated when there is 
activity in its respective cochlear channels. So, for example, a training sound containing 
only low frequencies will not train the high-frequency neurons and vice versa. All model­
ing results correspond with a single tonotopically organized TDNN trained using random 
sounds (unless explicitly stated otherwise). 
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4 Localization Performance of a Tonotopic Network 

Experimentation with the different network architectures clearly demonstrated that a net­
work with frequency division vastly improved the localization performance of the TDNNs 
(Figure I). In this case, frequency division was essential to producing a reasonable neural 
system model that would localize similarly to the human subject across all of the different 
band-pass conditions. For any single band-pass condition, it was found that the TDNN 
did not require frequency division within its architecture to produce quality solutions when 
trained only on these band-passed sounds. 

As mentioned above it was observed that a tonotopic network, one that divides the input fre­
quency channels into different groups and then progressively interconnects the neurons in 
the higher layers across frequency, was more robust in its localization performance across 
sounds with variable center-frequency and bandwidth than a simple fully connected net­
work. There are two likely explanations for this observation. One line of reasoning argues 
that it was easier for the tonotopic network to prevent a narrow band of frequency chan­
nels from dominating the localization computation across the entire set of sound stimuli. 
Or expressed slightly differently, it may have been easier for it to incorporate the relevant 
information across the different frequency channels. A second line of reasoning argues that 
the tonotopic network structure (along with the training with variable sounds) encouraged 
the network to develop meaningful connections for all frequencies. 

(a) SUBJECT VAS 

L R 

(b) TONOTOPIC 
NETWORK 

L R 

(c) NETWORK without 
FREQUENCY DIVISION 

•//'~~~;" " 
.~::,:<;- '., >~ 
, , , .>t 

.. ' .' . ~ : ' '" 
~;~::;;;,-
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Figure I: Comparison of the subject's VAS localization performance and the model's lo­
calization performance both with and without frequency division. The viewpoint is from 
an outside observer, with the target location shown by a cross and the response location 
shown by a black dot. 
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5 Matched Filtering and Sound Localization 

A number of previous sound localization models have used a relatively straight-forward 
matched filter or template matching analysis [9]. In such cases, the lTD and spectrum 
of a given input sound is commonly cross-correlated with the lTD and spectrum of an 
entire database of sounds for which the location is known. The location with the highest 
correlation is then chosen as the optimal source location. 

Matched filtering analysis is compared with the localization performance of both the hu­
man subject and the neural system model using a bandpass sound with restricted high­
frequencies (Figure 2). The matched filtering localizes the sounds much better than the sub­
ject or the TDNN model. The matched filtering model used the same number of cochlear 
channels as the TDNNs and therefore contained the same inherent spectral resolution. This 
spectral resolution (31 cochlear channels) is certainly less than the spectral resolution of the 
human cochlea. This shows that although there was sufficient information to localize the 
sounds from the point of view of matched filtering, neither the human nor TDNN demon­
strated such ability in their performance. In order for the TDNN to localize similarly to 
the matched filtering model, the network weights corresponding to a given location need 
to assume the form of the filter template for that location. As all of the training sounds 
were flat-spectrum, the TDNN received no ambiguity as far as the source spectrum was 
concerned. Thus it is likely that the difference in the distribution of localization responses 
in Figure 2b, as compared with that in Figure 2c, has been encouraged by using training 
sounds with random center-frequency and bandwidth, providing a partial explanation as to 
why the human localization performance is not optimal from a matched filtering standpoint. 

Figure 2: Comparison of the localization performances of the subject, the TDNN model, 
and a matched filtering model. Details as in Fig. I. 

6 Varying Sound Levels and the ILD Cue 

The training ofthe TDNNs was performed in such a fashion, that for any particular location 
in space, the sound level (67 dB SPL) did not vary by more than 1 dB SPL during repeated 
presentations of the sound. The localization performance of the neural system model was 
then examined, using a broadband sound source, across a range of sound levels varying 
from 60 dB SPL to 80 dB SPL. The spherical correlation coefficient between the target 
and response locations ([10], values above 0.8 indicate "high" correlation) remained above 
0.8 between 60 and 75 dB SPL demonstrating that there was a graceful degradation in 
localization performance over a range in sound level of 15 dB. 

The network was also tested on broadband sounds, 10 dB louder in one ear than the other. 
The results of these tests are shown in Figure 3 and clearly illustrate that the localization 
responses were pulled toward the side with the louder sound. While the magnitude of this 
effect is certainly not human-like, such behaviour suggests that interaurallevel difference 
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cues were a prominent and constant feature of the data that conferred a measure of robust­
ness to sound level variations. 

Figure 3: Model's localization performance with a 10 dB increase in sound level: 
(a,b) monaurally, (c) binaurally. 

7 Conclusions 

A neural system model was developed in which physiological constraints were imposed 
upon the modeling process: (I) a TDNN model was used to incorporate the important 
role of spectral-temporal processing in the auditory nervous system, (2) a tonotopic struc­
ture was added to the network, (3) the training sounds contained randomly varying center­
frequencies and bandwidths. This biologically plausible model provided increased under­
standing of the role that these constraints play in determining localization performance. 
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