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Abstract 

The reliability and accuracy of spike trains have been shown to 
depend on the nature of the stimulus that the neuron encodes. 
Adding ion channel stochasticity to neuronal models results in a 
macroscopic behavior that replicates the input-dependent reliabili­
ty and precision of real neurons. We calculate the amount of infor­
mation that an ion channel based stochastic Hodgkin-Huxley (HH) 
neuron model can encode about a wide set of stimuli. We show that 
both the information rate and the information per spike of the s­
tochastic model are similar to the values reported experimentally. 
Moreover, the amount of information that the neuron encodes is 
correlated with the amplitude of fluctuations in the input, and less 
so with the average firing rate of the neuron. We also show that for 
the HH ion channel density, the information capacity is robust to 
changes in the density of ion channels in the membrane, whereas 
changing the ratio between the Na+ and K+ ion channels has a 
considerable effect on the information that the neuron can encode. 
Finally, we suggest that neurons may maximize their information 
capacity by appropriately balancing the density of the different ion 
channels that underlie neuronal excitability. 

1 Introduction 

The capacity of neurons to encode information is directly connected to the nature 
of spike trains as a code. Namely, whether the fine temporal structure of the spik~ 
train carries information or whether the fine structure of the train is mainly noise 
(see e.g. [1, 2]). Experimental studies show that neurons in vitro [3, 4] and in vivo 
[5, 6, 7], respond to fluctuating inputs with repeatable and accurate spike trains, 
whereas slowly varying inputs result in lower repeatability and 'jitter' in the spike 
timing. Hence, it seems that the nature of the code utilized by the neuron depends 
on the input that it encodes [3, 6]. 

Recently, we suggested that the biophysical origin of this behavior is the stochas-
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ticity of single ion channels. Replacing the average conductance dynamics in the 
Hodgkin-Huxley (HH) model [8], with a stochastic channel population dynamics 
[9, 10, 11], yields a stochastic neuron model which replicates rather well the spike 
trains' reliability and precision of real neurons [12]. The stochastic model also shows 
subthreshold oscillations, spontaneous and missing spikes, all observed experimen­
tally. Direct measurement of membranal noise has also been replicated successfully 
by such stochastic models [13]. Neurons use many tens of thousands of ion channels 
to encode the synaptic current that reaches the soma into trains of spikes [14]. The 
number of ion channels that underlies the spike generation mechanism, and their 
types, depend on the activity of the neuron [15, 16]. It is yet unclear how such 
changes may affect the amount and nature of the information that neurons encode. 

Here we ask what is the information encoding capacity of the stochastic HH mod­
el neuron and how does this capacity depend on the densities of different of ion 
channel types in the membrane. We show that both the information rate and the 
information per spike of the stochastic HH model are similar to the values reported 
experimentally and that neurons encode more information about highly fluctuat­
ing inputs. The information encoding capacity is rather robust to changes in the 
channel densities of the HH model. Interestingly, we show that there is an optimal 
channel population size, around the natural channel density of the HH model. The 
encoding capacity is rather sensitive to changes in the distribution of channel types, 
suggesting that changes in the population ratios and adaptation through channel 
inactivation may change the information content of neurons. 

2 The Stochastic HH Model 

The stochastic HH (SHH) model expands the classic HH model [8], by incorporating 
the stochastic nature of single ion channels [9, 17]. Specifically, the membrane 
voltage dynamics is given by the HH description, namely, 

dV 
cmTt = -gLCV - VL) - gK(V, t)(V - VK) - gNa(V, t)(V - VNa) + I (1) 

where V is the membrane potential, VL, VK and VNa are the reversal potentials of 
the leakage, potassium and sodium currents, respectively, gL, gK(V, t) and gNa(V, t) 
are the corresponding ion conductances, Cm is the membrane capacitance and I is 
the injected current. The ion channel stochasticity is introduced by replacing the 
equations describing the ion channel conductances with explicit voltage-dependent 
Markovian kinetic models for single ion channels [9, 10]. Based on the activation 
and inactivation variables of the deterministic HH model, each K+ channel can be 
in one of five different states, and the rates for transition between these states are 
given in the following diagram, 

[ ] 4Qn [ ] 3an [ ] 2an [ ] an [ ] 
~ ~ ~ ~ ~ ~ ~ ~ ~ 

f3n 2f3n 3f3n 4f3n 

(2) 
where [nj] refers to the number of channels which are currently in the state nj. 

Here [n4] labels the single open state of a potassium channel, and an, i3n, are the 
voltage-dependent rate-functions in the HH formalism. A similar_model is used for 
the Na+ channel (The Na+ kinetic model has 8 states, with only one open state, 
see [12] for details). 

The potassium and sodium membrane conductances are given by, 

gK(V, t) = ,K [114] gNa(V, t) = ,Na [mahl] (3) 

where ,K and ,Na are the conductances of an ion channel for the K+ and Na+ re­
spectively. We take the conductance of a single channel to be 20pS [14] for both the 
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K+ and Na+ channel types 1. Each of the ion channels will thus respond stochas­
tically by closing or opening its 'gates' according to the kinetic model, fluctuating 
around the average expected behavior. Figure 1 demonstrates the effect of the ion 

A B 

Figure 1: Reliability of firing patterns in a model of an isopotential Hodgkin-Huxley 
membrane patch in response to different current inputs. (A) Injecting a slowly changing 
current input (low-pass Gaussian white noise with a mean TJ = 8I1A/cm2 , and standard 
deviation a = 1 p,A/ cm2 which was convolved with an 'alpha-function' with a time constant 
To = 3 msec, top frame), results in high 'jitter' in the timing of the spikes (raster plots 
of spike responses, bottom frame). (B) The same patch was again stimulated repeatedly, 
with a highly fluctuating stimulus (TJ = 8 p,A/cm2 , a = 7 p,A/cm2 and To = 3 msec, top 
frame) The 'jitter' in spike timing is significantly smaller in B than in A (i .e. increased 
reliability for the fluctuating current input). Patch area used was 200 p,m2 , with 3,600 K+ 
channels and 12,000 Na+ channels. (Compare to Fig.l in see [3]). (C) Average firing 
rate in response to DC current input of both the HH and the stochastic HH model. (D) 
Coefficient of variation of the inter spike interval of the SHH model in response to DC 
inputs, giving values which are comparable to those observed in real neurons 

channel stochasticity, showing the response of a 200 J.Lm2 SHH isopotential mem­
brane patch (with the 'standard' SHH channel densities) to repeated presentation 
of supra threshold current input. When the same slowly varying input is repeatedly 
presented (Fig. lA) , the spike trains are very different from each other, i.e. , spike 
firing time is unreliable. On the other hand, when the input is highly fluctuat­
ing (Fig. IB), the reliability of the spike timing is relatively high. The stochastic 
model thus replicates the input-dependent reliability and precision of spike trains 
observed in pyramidal cortical neurons [3] . As for cortical neurons, the Repeatability 
and Precision of the spike trains of the stochastic model (defined in [3]) are strongly 
correlated with the fluctuations in the current input and may get to sub-millisecond 
precision [12]. The f-I curve of the stochastic model (Fig. lC) and the coefficient of 
variation (CV) of the inter-spike intervals (lSI) distribution for DC inputs (Fig. ID) 
are both similar to the behavior of cortical neurons in vivo [18], in clear contrast to 
the deterministic model 2 

1 The number of channels is thus the ratio between the total conductance of a single type 
of ion channels and the single channel conductance, and so the 'standard' SHH densities 
will be 60 Na+ and 18 Na+ channels per p,m2 . 

2 Although the total number of channels in the model is very large, the microscopic level 
ion channel noise has a macroscopic effect on the spike train reliability, since the number 
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3 The Information Capacity of the SHH Neuron 

Expanding the Repeatability and Precision measures [3], we turn to quantify how 
much information the neuron model encodes about the stimuli it receives. We thus 
present the model with a set of 'representative' input current traces, and the amount 
of information that the respective spike trains encode is calculated. 

Following Mainen and Sejnowski [3], we use a set of input current traces which imi­
tate the synaptic current that reaches the soma from the dendritic tree. We convolve 
a Gaussian white noise trace (with a mean current 1} and standard deviation 0') with 
an alpha function (with a To: = 3 msec). Six different mean current values are used 
(1} = 0,2,4,6,8,10 pA/cm2 ) , and five different std values (0' = 1,3,5,7, 9pA/cm2 ), 

yielding a set of 30 input current traces (each is 10 seconds long). This set of inputs 
is representative of the wide variety of current traces that neurons might encounter 
under in vivo conditions in the sense that the average firing rates for this set of 
inputs which range between 2 - 70 Hz (not shown). 

We present these input traces to the model, and calculate the amount of information 
that the resulting spike trains convey about each input, following [6, 19]. Each 
input is presented repeatedly and the resulting spike trains are discretized in D..T 
bins, using a sliding 'window' of size T along the discretized sequence. Each train 
of spikes is thus transformed into a sequence of K-letter 'words' (K = T/D..T) , 
consisting of O's (no spike) and l's (spike). We estimate P(W), the probability of 
the word W to appear in the spike trains, and then compute the entropy rate of its 
total word distribution, 

Htotal = - L P(W) log2 P(W) 
W 

bits/word (4) 

which measures the capacity of information that the neuron spike trains hold [20, 6, 
19]. We then examine the set of words that the neuron model used at a particular 
time t over all the repeated presentations of the stimulus, and estimate P(Wlt), 
the time-dependent word probability distribution. At each time t we calculate the 
time-dependent entropy rate, and then take the average of these entropies 

Hnoise = (- LP(Wlt)lOg2 P(Wlt))t bits/word (5) 
w 

where ( .. . )t denotes the average over all times t. Hnoise is the noise entropy rate, 
which measures how much of the fine structure of the spike trains of the neuron is 
just noise. After performing the calculation for each of the inputs, using different 
word sizes 3, we estimate the limit of the total entropy and noise entropy rates at 
T --* 00, where the entropies converge to their real values (see [19] for details) . 

Figure 2A shows the total entropy rate of the responses to the set of stimuli, ranging 
from 10 to 170 bits/sec. The total entropy rate is correlated with the firing rates of 
the neuron (not shown). The noise entropy rate however, depends in a different way 
on the input parameters: Figure 2B shows the noise entropy rate of the responses 
to the set of stimuli, which may get up to 100 bits/sec. Specifically, for inputs with 
high mean current values and low fluctuation amplitude, many of the spikes are 

of ion channels which are open near the spike firing threshold is rather small [12). The 
fluctuations in this small number of open channels near firing threshold give rise to the 
input-dependent reliability of the spike timing. 

3t he bin size T = 2 msec has been set to be small enough to keep the fine tem­
poral structure of the spike train within the word sizes used, yet large enough to avoid 
undersampling problems 
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just noise, even if the mean firing rate is high. The difference between the neuron's 
entropy rate (the total capacity of information of the neuron's spike train) and the 
noise entropy rate, is exactly the average rate of information that the neuron's spike 
trains encode about the input , I(stimulus , spike train) = Htotal - Hnoise [20, 6], 
this is shown in Figure 2C. The information rate is more sensitive to the size of 
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Figure 2: Information capacity of the SHH model. (A) The total spike train entropy 
rate of the SHH model as a function of 'TI, the current input mean, and a, the standard 
deviation (see text for details). Error bar values of this surface as well as for the other 
frames range between 1 - 6% (not shown). (B) Noise entropy rate as a function of the 
current input parameters. (C) The information rate about the stimulus in the spike trains, 
as a function of the input parameters, calculated by subtracting noise entropy from the 
total entropy (note the change in grayscale in C and D). (D) Information per spike as a 
function of the input parameters, which is calculated by normalizing the results shown in 
C by the average firing rate of the responses to each of the inputs. 

fluctuations in the input than to the mean value of the current trace (as expected, 
from the reliability and precision of spike timing observed in vitro [3] and in vivo 
[6] as well as in simulations [12]). The dependence of the neural code on the input 
parameters is better reflected when calculating the average amount of information 
per spike that the model gives for each of the inputs (Fig. 2D) (see for comparison 
the values for the Fly's HI neuron [6]). 

4 The effect of Changing the Neuron Parameters on the 
Information Capacity 

Increasing the density of ion channels in the membrane compared to the 'standard' 
SHH densities, while keeping the ratio between the K+ and Na+ channels fixed, 
only diminishes the amount of information that the neuron encodes about any of 
the inputs in the set. However, the change is rather small: Doubling the channel 
density decreases the amount of information by 5 - 25% (Fig. 3A), depending on 
the specific input. Decreasing the channel densities of both types, results in en­
coding more information about certain stimuli and less about others. Figure 3B 
shows that having half the channel densities would result with in 10% changes in 
the information in both directions. Thus, the information rates conveyed by the s­
tochastic model are robust to changes in the ion channel density. Similar robustness 
(not shown) has been observed for changes in the membrane area (keeping channel 
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density fixed) and in the temperature (which effects the channel kinetics). However, 
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Figure 3: The effect of changing the ion channel densities on the information capacity. 
(A) The ratio of the information rate of the SHH model with twice the density of the 
'standard' SHH densities divided by the information rate of the mode with 'standard' 
SHH densities. (B) As in A, only for the SHH model with half the 'standard' densities. 
(C) The ratio of the info rate of the SHH model with twice as many Na+ channels, divided 
by the info rate of the standard SHH Na+ channel density, where the K+ channel density 
remains untouched (note the change in graycale in C and D). (D) As in C, only for the 
SHH model with the number of Na+ channels reduced by half. 

changing the density of the Na+ channels alone has a larger impact on the amount 
of information that the neuron conveys about the stimuli. Increasing Na+ channel 
density by a factor of two results in less information about most of the stimuli, and 
a gain in a few others (Fig. 3C). However, reducing the number of Na+ channels by 
half results in drastic loss of information for all of the inputs (Fig. 3D). 

5 Discussion 

We have shown that the amount of information that the stochastic HH model en­
codes about its current input is highly correlated with the amplitude of fluctuations 
in the input and less so with the mean value of the input. The stochastic HH 
model, which incorporates ion channel noise, closely replicates the input-dependent 
reliability and precision of spike trains observed in cortical neurons. The informa­
tion rates and information per spike are also similar to those of real neurons. As 
in other biological systems (e.g., [21]), we demonstrate robustness of macroscopic 
performance to changes in the cellular properties - the information coding rates of 
the SHH model are robust to changes in the ion channels densities as well as in 
the area of the excitable membrane patch and in the temperature (kinetics) of the 
channel dynamics. However, the information coding rates are rather sensitive to 
changes in the ratio between the densities of different ion channel types, suggests 
that the ratio between the density of the K+ channels and the Na+ channels in the 
'standard' SHH model may be optimal in terms of the information capacity. This 
may have important implications on the nature of the neural code under adaptation 
and learning. We suggest that these notions of optimality and robustness may be 
a key biophysical principle of the operation of real neurons. Further investigation­
s should take into account the activity-dependent nature of the channels and the 
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neuron [15, 16] and the notion of local learning rules which could modify neuronal 
and suggest loca1learning rules as in [22]. 
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