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Abstract 

There are many hierarchical clustering algorithms available, but these 
lack a firm statistical basis. Here we set up a hierarchical probabilistic 
mixture model, where data is generated in a hierarchical tree-structured 
manner. Markov chain Monte Carlo (MCMC) methods are demonstrated 
which can be used to sample from the posterior distribution over trees 
containing variable numbers of hidden units. 

1 Introduction 

Over the past decade or two mixture models have become a popular approach to clustering 
or competitive learning problems. They have the advantage of having a well-defined ob­
jective function and fit in with the general trend of viewing neural network problems in a 
statistical framework. However, one disadvantage is that they produce a "flat" cluster struc­
ture rather than the hierarchical tree structure that is returned by some clustering algorithms 
such as the agglomerative single-link method (see e.g. [12]). In this paper I formulate a 
hierarchical mixture model, which retains the advantages of the statistical framework, but 
also features a tree-structured hierarchy. 

The basic idea is illustrated in Figure 1 (a). At the root of the tree (level l) we have a single 
centre (marked with a x). This is the mean of a Gaussian with large variance (represented 
by the large circle). A random number of centres (in this case 3) are sampled from the level 
1 Gaussian, to produce 3 new centres (marked with o's). The variance associated with the 
level 2 Gaussians is smaller. A number of level 3 units are produced and associated with 
the level 2 Gaussians. The centre of each level 3 unit (marked with a +) is sampled from 
its parent Gaussian. This hierarchical process could be continued indefinitely, but in this 
example we generate data from the level 3 Gaussians, as shown by the dots in Figure lea). 

A three-level version of this model would be a standard mixture model with a Gaussian 
prior on where the centres are located. In the four-level model the third level centres are 
clumped together around the second level means, and it is this that distinguishes the model 
from a flat mixture model. Another view of the generative process is given in Figure l(b), 
where the tree structure denotes which nodes are children of particular parents. Note also 
that this is a directed acyclic graph, with the arrows denoting dependence of the position of 
the child on that of the parent. 
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In section 2 we describe the theory of probabilistic hierarchical clustering and give a dis­
cussion of related work. Experimental results are described in section 3. 

(a) (b) 

Figure 1: The basic idea of the hierarchical mixture model. (a) x denotes the root of the 
tree, the second level centres are denoted by o's and the third level centres by +'s. Data is 
generated from the third level centres by sampling random points from Gaussians whose 
means are the third level centres. (b) The corresponding tree structure. 

2 Theory 

We describe in turn (i) the prior over trees, (ii) the calculation of the likelihood given a 
data vector, (iii) Markov chain Monte Carlo (MCMC) methods for the inference of the tree 
structure given data and (iv) related work. 

2.1 Prior over trees 

We describe first the prior over the number of units in each layer, and then the prior on 
connections between layers. Consider a L layer hierarchical model. The root node is in 
levell, there are n2 nodes in level 2, and so on down to nL nodes on level L. These 
n's are collected together in the vector n. We use a Markovian model for P(n), so that 
P(n) = P(ndP(n2In1) ... P(nLlnL-1) with P(n1) = 8(n1,I). Currently these are 
taken to be Poisson distributions offset by 1, so that P(ni+llni) rv PO(Aini) + 1, where 
Ai is a parameter associated with level i. The offset is used so that there must always be at 
least one unit in any layer. 

Given n, we next consider how the tree is formed. The tree structure describes which node 
in the ith layer is the parent of each node in the (i + 1 )th layer, for i = 1, ... , L - 1. Each 
unit has an indicator vector which stores the index of the parent to which it is attached. We 
collect all these indicator vectors together into a matrix, denoted Z(n). The probability of 
a node in layer (i + 1) connecting to any node in layer i is taken to be I/ni. Thus 

L-1 
P(n, Z(n)) = P(n)P(Z(n)ln) = P(n) IT (I/ni)ni +1 • 

i=l 

We now describe the generation of a random tree given nand Z(n). For simplicity we 
describe the generation of points in I-d below, although everything can be extended to 
arbitrary dimension very easily. The mean f-Ll of the level 1 Gaussian is at the origin 1. The 

I It is easy to relax this assumption so that /-L 1 has a prior Gaussian distribution, or is located at 
some point other than the origin. 
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level 2 means It], j = 1, ... ,n2 are generated from N (It 1 , af), where ar is the variance 
associated with the level ] node. Similarly, the position of each level 3 node is generated 
from its level 2 parent as a displacement from the position of the level 2 parent. This 
displacement is a Gaussian RV with zero mean and variance ai. This process continues 
on down to the visible variables. In order for this model to be useful, we require that 
ar > ai > ... > aI-I' i.e. that the variability introduced at successive levels declines 
monotonically (cj scaling of wavelet coefficients). 

2.2 Calculation of the likelihood 

The data that we observe are the positions of the points in the final layer; this is denoted 
x. To calculate the likelihood of x under this model, we need to integrate out the locations 
of the means of the hidden variables in levels 2 through to L - 1. This can be done expli­
citly, however, we can shorten this calculation by realizing that given Z(n), the generative 
distribution for the observables x is Gaussian N(O, C). The covariance matrix C can be 
calculated as follows. Consider two leaf nodes indexed by k and i. The Gaussian RVs that 
generated the position of these two leaves can be denoted 

l 

_ 1 2 (L-l) 1 2 (L-l) 
Xk - Wk + Wk + ... + W k , XI = WI + WI + ... + WI . 

To calculate the covariance between Xk and Xl, we simply calculate (XkXI). This depends 
crucially on how many of the w's are shared between nodes k and l (cj path analysis). For 
example, if Wk i- wl, i.e. the nodes lie in different branches of the tree at levell, their 
covariance is zero. If k = l, the variance is just the sum of the variances of each RV in the 
tree. In between, the covariance of Xk and XI can be determined by finding at what level in 
the tree their common parent occurs. 

Under these assumptions, the log likelihood L of x given Z (n) is 

1 T -1 1 nL L=-"2x C x-"2logICI-Tlog21r. (1) 

In fact this calculation can be speeded up by taking account of the tree structure (see e.g. 
[8]). Note also that the posterior means (and variances) of the hidden variables can be 
calculated based on the covariances between the hidden and visible nodes. Again, this 
calculation can be carried out more efficiently; see Pearl [11] (section 7.2) for details. 

2.3 Inference for nand Z (n) 

Given n we have the problem of trying to infer the connectivity structure Z given the 
observations x. Of course what we are interested in is the posterior distribution over Z, 
i.e. P(Zlx, n). One approach is to use a Markov chain Monte Carlo (MCMC) method 
to sample from this posterior distribution. A straightforward way to do this is to use the 
Metropolis algorithm, where we propose changes in the structure by changing the parent of 
a single node at a time. Note the similarities of this algorithm to the work of Williams and 
Adams [14] on Dynamic Trees COTs); the main differences are Ci) that disconnections are 
not allowed, i.e. we maintain a single tree (rather than a forest), and (ii) that the variables 
in the DT image models are discrete rather than Gaussian. 

We also need to consider moves that change n. This can be effected with a split/merge 
move. In the split direction, consider a node with a parent and several children. Split this 
node and randomly assign the children to the two split nodes. Each of the split nodes keeps 
the same parent. The probability of accepting this move under the Metropolis-Hastings 
scheme is 

. (1 P(n', Z(n')lx)Q(n', Z(n'); n, Z(n))) 
a = mm 'P(n, Z(n)lx)Q(n, Z(n); n', Z(n')) , 
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where Q(n', Z(n'); n, Z(n)) is the proposal probability of configuration (n', Z(n')) given 
configuration (n, Z (n)). This scheme is based on the work on MCMC model composition 
(MC3 ) by Madigan and York [9], and on Green 's work on reversible jump MCMC [5]. 

Another move that changes n is to remove "dangling" nodes, i.e. nodes which have no 
children. This occurs when all the nodes in a given layer "decide" not to use one or more 
nodes in the layer above. 

An alternative to sampling from the posterior is to use approximate inference, such as 
mean-field methods. These are currently being investigated for DT models [1]. 

2.4 Related work 

There are a very large number of papers on hierarchical clustering; in this work we have fo­
cussed on expressing hierarchical clustering in terms of probabilistic models. For example 
Ambros-Ingerson et at [2] and Mozer [10] developed models where the idea is to cluster 
data at a coarse level, subtract out mean and cluster the residuals (recursively). This paper 
can be seen as a probabilistic interpretation of this idea. 

The reconstruction of phylogenetic trees from biological sequence (DNA or protein) in­
formation gives rise to the problem of inferring a binary tree from the data. Durbin et al 
[3] (chapter 8) show how a probabilistic formulation of the problem can be developed, and 
the link to agglomerative hierarchical clustering algorithms as approximations to the full 
probabilistic method (see §8.6 in [3]). Much of the biological sequence work uses discrete 
variables, which diverges somewhat from the focus of the current work. However work 
by Edwards (1970) [4] concerns a branching Brownian-motion process, which has some 
similarities to the model described above. Important differences are that Edwards' model is 
in continuous time, and the the variances of the particles are derived from a Wiener process 
(and so have variance proportional to the lifetime of the particle). This is in contrast to the 
decreasing sequence of variances at a given number of levels assumed in the above model. 
One important difference between the model discussed in this paper and the phylogenetic 
tree model is that points in higher levels of the phylogenetic tree are taken to be individuals 
at an earlier time in evolutionary history, which is not the interpretation we require here. 

An very different notion of hierarchy in mixture models can be found in the work on the 
AutoClass system [6]. They describe a model involving class hierarchy and inheritance, 
but their trees specify over which dimensions sharing of parameters occurs (e.g. means and 
covariance matrices for Gaussians). In contrast, the model in this paper creates a hierarchy 
over examples labelled 1, ... ,n rather than dimensions. 

Xu and Pearl [15] discuss the inference of a tree-structured belief network based on know­
ledge of the covariances of the leaf nodes. This algorithm cannot be applied directly in 
our case as the covariances are not known, although we note that if multiple runs from a 
given tree structure were available the covariances might be approximated using sample 
estimates. 

Other ideas concerning hierarchical clustering are discussed in [13] and [7]. 

3 Experiments 

We describe two sets of experiments to explore these ideas. 

3.1 Searching over Z with n fixed 

100 4-level random trees were generated from the prior, using values of >'1 = 1.5, >'2 = 2, 
>'3 = 3, and (JI = 10, (Ji = 1, (J~ = 0.01. These trees had between 4 and 79 leaf 
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nodes, with an average of 30. For each tree n was kept the same as in the generative 
tree, and sampling was carried out over Z starting from a random initial configuration. 
A given node proposes changing its parent, and this proposal is accepted or rejected with 
the usual Metropolis probability. In one sweep, each node in levels 3 and 4 makes such 
a move. (Level 2 nodes only have one parent so there is no point in such a move there.) 
To obtain a representative sample of P(Z(n)ln, x), we should run the chain for as long 
as possible. However, we can also use the chain to find configurations with high posterior 
probability, and in this case running for longer only increases the chances of finding a better 
configuration. In our experiments the sampler was run for 100 sweeps. As P(Z(n)ln) is 
uniform for fixed n, the posterior is simply proportional to the likelihood term. It would 
also be possible to run simulated annealing with the same move set to search explicitly for 
the maximum a posteriori (MAP) configuration. 

The results are that for 76 of the 100 cases the tree with the highest posterior probability 
(HPP) configuration had higher posterior probability than the generative tree, for 20 cases 
the same tree was found and in 4 cases the HPP solution was inferior to the generative tree. 
The fact that in almost all cases the sampler found a configuration as good or better than 
the generative one in a relatively small number of sweeps is very encouraging. 

In Figure 2 the generative (left column) and HPP trees for fixed n (middle column) are 
plotted for two examples. In panel (b) note the "dangling" node in level 2, which means 
that the level 3 nodes to the left end up in a inferior configuration to (a). By contrast, in 
panel (e) the sampler has found a better (less tangled) configuration than the generative 
model (d). 

_'1150841 

(a) (b) (c) 

(d) (e) (f) 

Figure 2: (a) and (d) show the generative trees for two examples. The corresponding HPP 
trees for fixed n are plotted in (b) and (e) and those for variable n in (c) and (f). The number 
in each panel is the log posterior probability of the configuration. The nodes in levels 2 and 
3 are shown located at their posterior means. Apparent non-tree structures are caused by 
two nodes being plotted almost on top of each other. 

3.2 Searching over both nand Z 

Given some data x we will not usually know appropriate numbers of hidden units. This 
motivates searching over both Z and n, which can be achieved using the split/merge moves 
discussed in section 2.3. 

In the experiments below the initial numbers of units in levels 2 and 3 (denoted n2 and 
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113) were set using the simple-minded formulae 113 = rdim(x)/A31112 = r113/A21. A 
proper inferential calculation for 71,2 and 71,3 can be carried out, but it requires the solution 
of a non-linear optimization problem. Given 112 and 113, the initial connection configuration 
was chosen randomly. 

The search method used was to propose a split/merge move (with probability 0.5:0.5) in 
level 2, then to sample the level 2 to level 3 connections, and then to propose a split-merge 
move in level 3, and then update the level 3 to level 4 connections. This comprised a single 
sweep, and as above 100 sweeps were used. 

Experiments were conducted on the same trees used in section 3.1. In this case the results 
were that for 50 out of the 100 cases, the HPP configuration had higher posterior probability 
than the generative tree, for 11 cases the same tree was found and in 39 cases the HPP 
solution was inferior to the generative tree. Overall these results are less good than the 
ones in section 3.1, but it should be remembered that the search space is now much larger, 
and so it would be expected that one would need to search longer. Comparing the results 
from fixed n against those with variable n shows that in 42 out of 100 cases the variable 
n method gave a higher posterior probability. in 45 cases it was lower and in 13 cases the 
same trees were found. 

The rightmost column of Figure 2 shows the HPP configurations when sampling with vari­
able n on the two examples discussed above. In panel (c) the solution found is not very 
dissimilar to that in panel (b), although the overall probability is lower. In Cf), the solution 
found uses just one level 2 centre rather than two, and obtains a higher posterior probability 
than the configurations in (e) and Cd). 

4 Discussion 

The results above indicate that the proposed model behaves sensibly, and that reasonable 
solutions can be found with relatively short amounts of search. The method has been 
demonstrated on univariate data, but extending it to multivariate Gaussian data for which 
each dimension is independent given the tree structure is very easy as the likelihood calcu­
lation is independent on each dimension. 

There are many other directions is which the model can be developed. Firstly, the model as 
presented has uniform mixing proportions, so that children are equally likely to connect to 
each potential parent. This can be generalized so that there is a non-uniform vector of con­
nection probabilities in each layer. Also, given a tree structure and independent Dirichlet 
priors over these probability vectors, these parameters can be integrated out analytically. 
Secondly, the model can be made to generate iid data by regarding the penultimate layer 
as mixture centres; in this case the term P(nLI71,L-l) would be ignored when computing 
the probability of the tree. Thirdly, it would be possible to add the variance variables to the 
MCMC scheme, e.g. using the Metropolis algorithm, after defining a suitable prior on the 
sequence of variances ai, ... ,ai-I' The constraint that all variances in the same level are 
equal could also be relaxed by allowing them to depend on hyperparameters set at every 
level. Fourthly, there may be improved MCMC schemes that can be devised. For example, 
in the current implementation the posterior means of the candidate units are not taken into 
account when proposing merge moves Ccj [5]). Fifthly, for the multivariate Gaussian ver­
sion we can consider a tree-structured factor analysis model, so that higher levels in the 
tree need not have the same dimensionality as the data vectors. 

One can also consider a version where each dimension is a multinomial rather than a con­
tinuous variable. In this case one might consider a model where a multinomial parameter 
vector (}l in the tree is generated from its parent by (}l = 'Y(}l-l + (1- 'Y)r where 'Y E [0,1] 
and r is a random vector of probabilities. An alternative model could be to build a tree 
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structured prior on the a parameters of the Dirichlet prior for the multinomial distribution. 
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