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Abstract 
Ever since Pearl's probability propagation algorithm in graphs with 
cycles was shown to produce excellent results for error-correcting 
decoding a few years ago, we have been curious about whether 
local probability propagation could be used successfully for ma­
chine learning. One of the simplest adaptive models is the factor 
analyzer, which is a two-layer network that models bottom layer 
sensory inputs as a linear combination of top layer factors plus in­
dependent Gaussian sensor noise. We show that local probability 
propagation in the factor analyzer network usually takes just a few 
iterations to perform accurate inference, even in networks with 320 
sensors and 80 factors. We derive an expression for the algorithm's 
fixed point and show that this fixed point matches the exact solu­
tion in a variety of networks, even when the fixed point is unstable. 
We also show that this method can be used successfully to perform 
inference for approximate EM and we give results on an online face 
recognition task. 

1 Factor analysis 
A simple way to encode input patterns is to suppose that each input can be well­
approximated by a linear combination of component vectors, where the amplitudes 
of the vectors are modulated to match the input. For a given training set, the most 
appropriate set of component vectors will depend on how we expect the modula­
tion levels to behave and how we measure the distance between the input and its 
approximation. These effects can be captured by a generative probabilit~ model 
that specifies a distribution p(z) over modulation levels z = (Zl, ... ,ZK) and a 
distribution p(xlz) over sensors x = (Xl, ... ,XN)T given the modulation levels. 
Principal component analysis, independent component analysis and factor analysis 
can be viewed as maximum likelihood learning in a model of this type, where we as­
sume that over the training set, the appropriate modulation levels are independent 
and the overall distortion is given by the sum of the individual sensor distortions. 

In factor analysis, the modulation levels are called factors and the distributions 
have the following form: 

p(Zk) = N(Zk; 0,1), 

p(xnl z) = N(xn; E~=l AnkZk, 'l/Jn), 

p(z) = nf=lP(Zk) = N(z; 0, I), 

p(xlz) = n:=IP(xnlz) = N(x; Az, 'It). (1) 
The parameters of this model are the factor loading matrix A, with elements Ank, 
and the diagonal sensor noise covariance matrix 'It, with diagonal elements 'l/Jn. A 
belief network for the factor analyzer is shown in Fig. 1a. The likelihood is 

p(x) = 1 N(z; 0, I)N(x; Az, 'It)dz = N(x; 0, AA T + 'It), (2) 
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Figure 1: (a) A belief network for factor analysis. (b) High-dimensional data (N = 560). 

and online factor analysis consists of adapting A and q, to increase the likelihood 
of the current input, such as a vector of pixels from an image in Fig. lb. 

Probabilistic inference - computing or estimating p{zlx) - is needed to do dimen­
sionality reduction and to fill in the unobserved factors for online EM-type learning. 
In this paper, we focus on methods that infer independent factors. p(zlx) is Gaus­
sian and it turns out that the posterior means and variances of the factors are 

E[zlx] = (A Tq,-l A + 1)-1 AT q,-lx, 

diag(COV(zlx)) = diag(A T q,-l A + 1)-1). (3) 

Given A and q" computing these values exactly takes O(K2 N) computations, 
mainly because of the time needed to compute AT q,-l A. Since there are only K N 
connections in the network, exact inference takes at least O{K) bottom-up/top 
down iterations. 

Of course, if the same network is going to be applied more than K times for inference 
(e.g., for batch EM), then the matrices in (3) can be computed once and reused. 
However, this is not directly applicable in online learning and in biological models. 
One way to circumvent computing the matrices is to keep a separate recognition 
network, which approximates E[zlx] with Rx (Dayan et al., 1995). The optimal 
recognition network, R = (A Tq,-l A+I)-l A Tq,-l, can be approximated by jointly 
estimating the generative network and the recognition network using online wake­
sleep learning (Hinton et al., 1995). 

2 Probability propagation in the factor analyzer network 
Recent results on error-correcting coding show that in some cases Pearl's prob­
ability propagation algorithm, which does exact probabilistic inference in graphs 
that are trees, gives excellent performance even if the network contains so many 
cycles that its minimal cut set is exponential (Frey and MacKay, 1998; Frey, 1998; 
MacKay, 1999). In fact, the probability propagation algorithm for decoding low­
density parity-check codes (MacKay, 1999) and turbocodes (Berrou and Glavieux, 
1996) is widely considered to be a major breakthrough in the information theory 
community. 

When the network contains cycles, the local computations give rise to an iterative 
algorithm, which hopefully converges to a good answer. Little is known about the 
convergence properties of the algorithm. Networks containing a single cycle have 
been successfully analyzed by Weiss (1999) and Smyth et al. (1997), but results for 
networks containing many cycles are much less revealing. 

The probability messages produced by probability propagation in the factor analyzer 
network of Fig. 1a are Gaussians. Each iteration of propagation consists of passing 
a mean and a variance along each edge in a bottom-up pass, followed by passing 
a mean and a variance along each edge in a top-down pass. At any instant, the 
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bottom-up means and variances can be combined to form estimates of the means 
and variances of the modulation levels given the input. 

Initially, the variance and mean sent from the kth top layer unit to the nth sensor 
is set to vk~ = 1 and 7]i~ = 0. The bottom-up pass begins by computing a noise 
level and an error signal at each sensor using the top-down variances and means 
from the previous iteration: 

s~) = 'l/Jn + 2:{:=1 A;kVk~-I) , e~) = Xn - 2: {:= 1 Ank7]i~-l). (4) 

These are used to compute bottom-up variances and means as follows: 

",(i) = s(i)/A2 _ v(i-l) lI(i) = e(i)/A k + 7](i-l) 
'l'nk n nk kn' r'nk n n kn' (5) 

The bottom-up variances and means are then combined to form the current esti­
mates of the modulation variances and means: 

(i) N (i) A(i) _ (i)"",N (i)/",(i) 
V k = 1/(1 + 2:n=1 1/¢nk)' Zk - V k L..Jn=lJ.tnk 'l'nk' (6) 

The top-down pass proceeds by computing top-down variances and means as follows: 

vk~ = l/(l/vii ) - l/¢~l), 7]i~ = vk~(.iki) /vii ) - J.t~V¢~l)· (7) 

Notice that the variance updates are independent of the mean updates, whereas the 
mean updates depend on the variance updates. 

2.1 Performance of local probability propagation. We created a total of 
200,000 factor analysis networks with 20 different sizes ranging from K = 5, N = 10 
to K = 80, N = 320 and for each size of network we measured the inference error as 
a function of the number of iterations of propagation. Each of the 10,000 networks of 
a given size was produced by drawing the AnkS from standard normal distributions 
and then drawing each sensor variance 'l/Jn from an exponential distribution with 
mean 2:{:=1 A;k' (A similar procedure was used by Neal and Dayan (1997).) 

For each random network, a pattern was simulated from the network and probabil­
ity propagation was applied using the simulated pattern as input. We measured the 
error between the estimate z(i) and the correct value E[zlx] by computing the dif­
ference between their coding costs under the exact posterior distribution and then 
normalizing by K to get an average number of nats per top layer unit. 

Fig. 2a shows the inference error on a logarithmic scale versus the number of iter­
ations (maximum of 20) in the 20 different network sizes. In all cases, the median 
error is reduced below .01 nats within 6 iterations. The rate of convergence of the 
error improves for larger N, as indicated by a general trend for the error curves to 
drop when N is increased. In contrast, the rate of convergence of the error appears 
to worsen for larger K, as shown by a general slight trend for the error curves to 
rise when K is increased. 

For K ~ N/8, 0.1% of the networks actually diverge. To better understand the di­
vergent cases, we studied the means and variances for all of the divergent networks. 
In all cases, the variances converge within a few iterations whereas the means oscil­
late and diverge. For K = 5, N = 10, 54 of the 10,000 networks diverged and 5 of 
these are shown in Fig. 2b. This observation suggests that in general the dynamics 
are determined by the dynamics of the mean updates. 

2.2 Fixed points and a condition for global convergence. When the vari­
ance updates converge, the dynamics of probability propagation in factor analysis 
networks become linear. This allows us to derive the fixed point of propagation in 
closed form and write an eigenvalue condition for global convergence. 
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Figure 2: (a) Performance of probability propagation . Median inference error (bold curve) 
on a logarithmic scale as a function of the number of iterations for different sizes of network 
parameterized by K and N. The two curves adjacent to the bold curve show the range within 
which 98% of the errors lie. 99 .9% of the errors were below the fourth, topmost curve. (b) 
The error, bottom-up variances and top-down means as a function of the number of iterations 
(maximum of 20) for 5 divergent networks of size K = 5, N = 10. 

To analyze the system of mean updates, we define the following length K N vec-
f d h · . - (i) _ ( (i) (i) (i) (i ) (i))T - (i) _ tors 0 means an t e mput . TJ - 1711,1721"'" 17Kl' 1712' " . , 17KN , P, -

( (i ) (i) ( i ) (i) (i ) )T - ( )T 
J-tll,J-t12 ' ''' ,J-tlK , J-t21'''' , J-tNK , X= Xl,Xl, .. · ,Xl,X2, .. · , X2 , XN, .. · ,XN , 

where each Xn is repeated K times in the last vector. The network parameters are 
represented using K N x K N diagonal matrices, A and q,. The diagonal of A is 
A11, ... , AIK , A21, ... , ANK, and the diagonal of q, is '1/111, '1/121, ... , '1/INI, where 1 is 
the K x K identity matrix. The converged bottom-up variances are represented 
using a diagonal matrix ~ with diagonal ¢11, ... , ¢IK , ¢21, .. . , ¢NK. 

The summation operations in the propagation formulas are represented by a K N x 
K N matrix I: z that sums over means sent down from the top layer and a K N x K N 
matrix I:x that sums over means sent up from the sensory input: 

) :Ex = (~ 
1 ' i 

1 
1 
1 

1 

(8) 

These are N x N matrices of K x K blocks, where 1 is the K x K block of ones 
and 1 is the K x K identity matrix. 

Using the above representations, the bottom-up pass is given by 

ji, (i) = A-I X _ A- I (:E z - I)Af7(i-l), (9) 

and the top-down pass is given by 

f7( i) = (I + diag(:Ex~ -1 :Ex) _ ~ -1) -1 (I:x _ I)~ -1 ji,( i ) . (10) 

Substituting (10) into (9), we get the linear update for ji,: 

ji,(i) = A-I X _ A-I (:E z _ I)A(I + diag(:Exci -l:Ex) _ c) -1) -1 (:Ex _ I)ci -1 ji, (i -l). 

(11) 
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Figure 3: The error (log scale) versus number of iterations (log scale. max. of 1000) in 10 
of the divergent networks with K = 5. N = 10. The means were initialized to the fixed point 
solutions and machine round-off errors cause divergence from the fixed points. whose errors 
are shown by horizontal lines. 

The fixed point of this dynamic system, when it exists, is 

ji,* = ~ (A~ + (tz - I)A(I + diag(I:xc) -ltx) - ~ -1) -\tx - I)) -1 x. (12) 

A fixed point exists if the determinant of the expression in large braces in (12) is 
nonzero. We have found a simplified expression for this determinant in terms of the 
determinants of smaller, K x K matrices. 

Reinterpreting the dynamics in (11) as dynamics for Aji,(i), the stability of a fixed 
point is determined by the largest eigenvalue of the update matrix, (I:z - I)A (I + 

- - -1 - - -1 -1 - - -1 - -1 
diag(Exc}) Ex)-c}) ) (Ex-I)c}) A . If the modulus ofthe largest eigenvalue 
is less than 1, the fixed point is stable. Since the system is linear, if a stable fixed 
point exists, the system will be globally convergent to this point. 

Of the 200,000 networks we explored, about 99.9% of the networks converged. For 
10 of the divergent networks with K = 5, N = 10, we used 1000 iterations of prob­
ability propagation to compute the steady state variances. Then, we computed the 
modulus of the largest eigenvalue of the system and we computed the fixed point. 
After initializing the bottom-up means to the fixed point values, we performed 1000 
iterations to see if numerical errors due to machine precision would cause divergence 
from the fixed point. Fig. 3 shows the error versus number of iterations (on loga­
rithmic scales) for each network, the error of the fixed point, and the modulus of 
the largest eigenvalue. In some cases, the network diverges from the fixed point and 
reaches a dynamic equilibrium that has a lower average error than the fixed point. 

3 Online factor analysis 
To perform maximum likelihood factor analysis in an online fashion, each parameter 
should be modified to slightly increase the log-probability of the current sensory 
input,logp(x). However, since the factors are hidden, they must be probabilistically 
"filled in" using inference before an incremental learning step is performed. 

If the estimated mean and variance of the kth factor are Zk and Vk, then it turns 
out (e.g., Neal and Dayan, 1997) the parameters can be updated as follows: 

Ank f- Ank + l}[Zk(Xn - Ef=1 AnjZj) - VkAnk]/'ljln, 

'IjIn f- (l-l})'ljln + l}[(xn - Ef=1 AnjZj)2 + Ef=1 VkA~j], (13) 

where 1} is a learning rate. 

Online learning consists of performing some number of iterations of probability prop­
agation for the current input (e.g., 4 iterations) and then modifying the parameters 
before processing the next input. 

3.1 Results on simulated data. We produced 95 training sets of 200 cases 
each, with input sizes ranging from 20 sensors to 320 sensors. For each of 19 sizes 
of factor analyzer, we randomly selected 5 sets of parameters as described above 
and generated a training set. The factor analyzer sizes were K E {5, 10,20,40, 80}, 
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Figure 4: (a) Achievable errors after the same number of epochs of learning using 4 iterations 
versus 1 iteration. The horizontal axis gives the log-probability error (log scale) for learning with 
1 iteration and the vertical axis gives the error after the same number of epochs for learning 
with 4 iterations. (b) The achievable errors for learning using 4 iterations of propagation versus 
wake-sleep learning using 4 iterations. 

N E {20, 40, 80,160, 320}, N > K. For each factor analyzer and simulated data set, 
we estimated the optimal log-probability of the data using 100 iterations of EM. 

For learning, the size of the model to be trained was set equal to the size of the model 
that was used to generate the data. To avoid the issue of how to schedule learning 
rates, we searched for achievable learning curves, regardless of whether or not a 
simple schedule for the learning rate exists. So, for a given method and randomly 
initialized parameters, we performed one separate epoch of learning using each of 
the learning rates, 1,0.5, ... ,0.520 and picked the learning rate that most improved 
the log-probability. Each successive learning rate was determined by comparing the 
performance using the old learning rate and one 0.75 times smaller. 

We are mainly interested in comparing the achievable curves for different methods 
and how the differences scale with K and N. For two methods with the same K 
and N trained on the same data, we plot the log-probability error (optimal log­
probability minus log-probability under the learned model) of one method against 
the log-probability error of the other method. 

Fig. 4a shows the achievable errors using 4 iterations versus using 1 iteration. Usu­
ally, using 4 iterations produces networks with lower errors than those learned using 
1 iteration. The difference is most significant for networks with large K, where in 
Sec. 2.1 we found that the convergence of the inference error was slower. 

Fig. 4b shows the achievable errors for learning using 4 iterations of probability 
propagation versus wake-sleep learning using 4 iterations. Generally, probability 
propagation achieves much smaller errors than wake-sleep learning, although for 
small K wake-sleep performs better very close to the optimum log-probability. The 
most significant difference between the methods occurs for large K, where aside 
from local optima probability propagation achieves nearly optimal log-probabilities 
while the log-probabilities for wake-sleep learning are still close to their values at 
the start of learning. 

4 Online face recognition 
Fig. 1b shows examples from a set of 30,000 20 x 28 greyscale face images of 18 
different people. In contrast to other data sets used to test face recognition methods, 
these faces include wide variation in expression and pose. To make classification 
more difficult, we normalized the images for each person so that each pixel has 
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the same mean and variance. We used probability propagation and a recognition 
network in a factor analyzer to reduce the dimensionality of the data online from 
560 dimensions to 40 dimensions. For probability propagation, we rather arbitrarily 
chose a learning rate of 0.0001, but for wake-sleep learning we tried learning rates 
ranging from 0.1 down to 0.0001. A multilayer perceptron with one hidden layer of 
160 tanh units and one output layer of 18 softmax units was simultaneously being 
trained using gradient descent to predict face identity from the mean factors. The 
learning rate for the multilayer perceptron was set to 0.05 and this value was used 
for both methods. 

For each image, a prediction was made before the pa­
rameters were modified. Fig. 5 shows online error 
curves obtained by filtering the losses. The curve for 
probability propagation is generally below the curves 
for wake-sleep learning. 

The figure also shows the error curves for two forms of 
online nearest neighbors, where only the most recent 
W cases are used to make a prediction. The form of 
nearest neighbors that performs the worst has W set so 
that the storage requirements are the same as for the 
factor analysis / multilayer perceptron method. The 
better form of nearest neighbors has W set so that the 
number of computations is the same as for the factor 
analysis / multilayer perceptron method. 

5 Summary 

~ 

j 
"' " \ ' i .. ',"--""~ \<',::,::'--, ... , ... "" 

'. ~, 

'. 

Number of pattern presentations 

Figure 5: Online error 
curves for probability prop­
agation (solid), wake-sleep 
learning (dashed), nearest 
neighbors (dot-dashed) 
and guessing (dotted). 

It turns out that iterative probability propagation can be fruitful when used for 
learning in a graphical model with cycles, even when the model is densely con­
nected. Although we are more interested in extending this work to more complex 
models where exact inference takes exponential time, studying iterative probability 
propagation in the factor analyzer allowed us to compare our results with exact in­
ference and allowed us to derive the fixed point of the algorithm. We are currently 
applying iterative propagation in multiple cause networks for vision problems. 
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