
Local probability propagation for factor
analysis

Brendan J. Frey
Computer Science, University of Waterloo, Waterloo, Ontario, Canada

Abstract
Ever since Pearl's probability propagation algorithm in graphs with
cycles was shown to produce excellent results for error-correcting
decoding a few years ago, we have been curious about whether
local probability propagation could be used successfully for ma­
chine learning. One of the simplest adaptive models is the factor
analyzer, which is a two-layer network that models bottom layer
sensory inputs as a linear combination of top layer factors plus in­
dependent Gaussian sensor noise. We show that local probability
propagation in the factor analyzer network usually takes just a few
iterations to perform accurate inference, even in networks with 320
sensors and 80 factors. We derive an expression for the algorithm's
fixed point and show that this fixed point matches the exact solu­
tion in a variety of networks, even when the fixed point is unstable.
We also show that this method can be used successfully to perform
inference for approximate EM and we give results on an online face
recognition task.

1 Factor analysis
A simple way to encode input patterns is to suppose that each input can be well­
approximated by a linear combination of component vectors, where the amplitudes
of the vectors are modulated to match the input. For a given training set, the most
appropriate set of component vectors will depend on how we expect the modula­
tion levels to behave and how we measure the distance between the input and its
approximation. These effects can be captured by a generative probabilit~ model
that specifies a distribution p(z) over modulation levels z = (Zl, ... ,ZK) and a
distribution p(xlz) over sensors x = (Xl, ... ,XN)T given the modulation levels.
Principal component analysis, independent component analysis and factor analysis
can be viewed as maximum likelihood learning in a model of this type, where we as­
sume that over the training set, the appropriate modulation levels are independent
and the overall distortion is given by the sum of the individual sensor distortions.

In factor analysis, the modulation levels are called factors and the distributions
have the following form:

p(Zk) = N(Zk; 0,1),

p(xnl z) = N(xn; E~=l AnkZk, 'l/Jn),

p(z) = nf=lP(Zk) = N(z; 0, I),

p(xlz) = n:=IP(xnlz) = N(x; Az, 'It). (1)
The parameters of this model are the factor loading matrix A, with elements Ank,
and the diagonal sensor noise covariance matrix 'It, with diagonal elements 'l/Jn. A
belief network for the factor analyzer is shown in Fig. 1a. The likelihood is

p(x) = 1 N(z; 0, I)N(x; Az, 'It)dz = N(x; 0, AA T + 'It), (2)

Local Probability Propagation for Factor Analysis 443

(b)
...., - -... - 'J 1t. ,

" E
'r ... '"

"' I:~
~. '.

Figure 1: (a) A belief network for factor analysis. (b) High-dimensional data (N = 560).

and online factor analysis consists of adapting A and q, to increase the likelihood
of the current input, such as a vector of pixels from an image in Fig. lb.

Probabilistic inference - computing or estimating p{zlx) - is needed to do dimen­
sionality reduction and to fill in the unobserved factors for online EM-type learning.
In this paper, we focus on methods that infer independent factors. p(zlx) is Gaus­
sian and it turns out that the posterior means and variances of the factors are

E[zlx] = (A Tq,-l A + 1)-1 AT q,-lx,

diag(COV(zlx)) = diag(A T q,-l A + 1)-1). (3)

Given A and q" computing these values exactly takes O(K2 N) computations,
mainly because of the time needed to compute AT q,-l A. Since there are only K N
connections in the network, exact inference takes at least O{K) bottom-up/top
down iterations.

Of course, if the same network is going to be applied more than K times for inference
(e.g., for batch EM), then the matrices in (3) can be computed once and reused.
However, this is not directly applicable in online learning and in biological models.
One way to circumvent computing the matrices is to keep a separate recognition
network, which approximates E[zlx] with Rx (Dayan et al., 1995). The optimal
recognition network, R = (A Tq,-l A+I)-l A Tq,-l, can be approximated by jointly
estimating the generative network and the recognition network using online wake­
sleep learning (Hinton et al., 1995).

2 Probability propagation in the factor analyzer network
Recent results on error-correcting coding show that in some cases Pearl's prob­
ability propagation algorithm, which does exact probabilistic inference in graphs
that are trees, gives excellent performance even if the network contains so many
cycles that its minimal cut set is exponential (Frey and MacKay, 1998; Frey, 1998;
MacKay, 1999). In fact, the probability propagation algorithm for decoding low­
density parity-check codes (MacKay, 1999) and turbocodes (Berrou and Glavieux,
1996) is widely considered to be a major breakthrough in the information theory
community.

When the network contains cycles, the local computations give rise to an iterative
algorithm, which hopefully converges to a good answer. Little is known about the
convergence properties of the algorithm. Networks containing a single cycle have
been successfully analyzed by Weiss (1999) and Smyth et al. (1997), but results for
networks containing many cycles are much less revealing.

The probability messages produced by probability propagation in the factor analyzer
network of Fig. 1a are Gaussians. Each iteration of propagation consists of passing
a mean and a variance along each edge in a bottom-up pass, followed by passing
a mean and a variance along each edge in a top-down pass. At any instant, the

444 B.J. Frey

bottom-up means and variances can be combined to form estimates of the means
and variances of the modulation levels given the input.

Initially, the variance and mean sent from the kth top layer unit to the nth sensor
is set to vk~ = 1 and 7]i~ = 0. The bottom-up pass begins by computing a noise
level and an error signal at each sensor using the top-down variances and means
from the previous iteration:

s~) = 'l/Jn + 2:{:=1 A;kVk~-I) , e~) = Xn - 2: {:= 1 Ank7]i~-l). (4)

These are used to compute bottom-up variances and means as follows:

",(i) = s(i)/A2 _ v(i-l) lI(i) = e(i)/A k + 7](i-l)
'l'nk n nk kn' r'nk n n kn' (5)

The bottom-up variances and means are then combined to form the current esti­
mates of the modulation variances and means:

(i) N (i) A(i) _ (i)"",N (i)/",(i)
V k = 1/(1 + 2:n=1 1/¢nk)' Zk - V k L..Jn=lJ.tnk 'l'nk' (6)

The top-down pass proceeds by computing top-down variances and means as follows:

vk~ = l/(l/vii) - l/¢~l), 7]i~ = vk~(.iki) /vii) - J.t~V¢~l)· (7)

Notice that the variance updates are independent of the mean updates, whereas the
mean updates depend on the variance updates.

2.1 Performance of local probability propagation. We created a total of
200,000 factor analysis networks with 20 different sizes ranging from K = 5, N = 10
to K = 80, N = 320 and for each size of network we measured the inference error as
a function of the number of iterations of propagation. Each of the 10,000 networks of
a given size was produced by drawing the AnkS from standard normal distributions
and then drawing each sensor variance 'l/Jn from an exponential distribution with
mean 2:{:=1 A;k' (A similar procedure was used by Neal and Dayan (1997).)

For each random network, a pattern was simulated from the network and probabil­
ity propagation was applied using the simulated pattern as input. We measured the
error between the estimate z(i) and the correct value E[zlx] by computing the dif­
ference between their coding costs under the exact posterior distribution and then
normalizing by K to get an average number of nats per top layer unit.

Fig. 2a shows the inference error on a logarithmic scale versus the number of iter­
ations (maximum of 20) in the 20 different network sizes. In all cases, the median
error is reduced below .01 nats within 6 iterations. The rate of convergence of the
error improves for larger N, as indicated by a general trend for the error curves to
drop when N is increased. In contrast, the rate of convergence of the error appears
to worsen for larger K, as shown by a general slight trend for the error curves to
rise when K is increased.

For K ~ N/8, 0.1% of the networks actually diverge. To better understand the di­
vergent cases, we studied the means and variances for all of the divergent networks.
In all cases, the variances converge within a few iterations whereas the means oscil­
late and diverge. For K = 5, N = 10, 54 of the 10,000 networks diverged and 5 of
these are shown in Fig. 2b. This observation suggests that in general the dynamics
are determined by the dynamics of the mean updates.

2.2 Fixed points and a condition for global convergence. When the vari­
ance updates converge, the dynamics of probability propagation in factor analysis
networks become linear. This allows us to derive the fixed point of propagation in
closed form and write an eigenvalue condition for global convergence.

Local Probability Propagation for Factor Analysis

(a) K = 5

~',:~
~ 01~
g"Xl~
... 10

II

~ 1:~
11' 0~
~ .01

~ ',:u
2: 0,

~ ',:~
~ 0'

o ,OO~

~' O~
~ 01 0 10 20

K = 10 K=20 K=40

445

K=80

Figure 2: (a) Performance of probability propagation . Median inference error (bold curve)
on a logarithmic scale as a function of the number of iterations for different sizes of network
parameterized by K and N. The two curves adjacent to the bold curve show the range within
which 98% of the errors lie. 99 .9% of the errors were below the fourth, topmost curve. (b)
The error, bottom-up variances and top-down means as a function of the number of iterations
(maximum of 20) for 5 divergent networks of size K = 5, N = 10.

To analyze the system of mean updates, we define the following length K N vec-
f d h · . - (i) _ ((i) (i) (i) (i) (i))T - (i) _ tors 0 means an t e mput . TJ - 1711,1721"'" 17Kl' 1712' " . , 17KN , P, -

((i) (i) (i) (i) (i))T - ()T
J-tll,J-t12 ' ''' ,J-tlK , J-t21'''' , J-tNK , X= Xl,Xl, .. · ,Xl,X2, .. · , X2 , XN, .. · ,XN ,

where each Xn is repeated K times in the last vector. The network parameters are
represented using K N x K N diagonal matrices, A and q,. The diagonal of A is
A11, ... , AIK , A21, ... , ANK, and the diagonal of q, is '1/111, '1/121, ... , '1/INI, where 1 is
the K x K identity matrix. The converged bottom-up variances are represented
using a diagonal matrix ~ with diagonal ¢11, ... , ¢IK , ¢21, .. . , ¢NK.

The summation operations in the propagation formulas are represented by a K N x
K N matrix I: z that sums over means sent down from the top layer and a K N x K N
matrix I:x that sums over means sent up from the sensory input:

) :Ex = (~
1 ' i

1
1
1

1

(8)

These are N x N matrices of K x K blocks, where 1 is the K x K block of ones
and 1 is the K x K identity matrix.

Using the above representations, the bottom-up pass is given by

ji, (i) = A-I X _ A- I (:E z - I)Af7(i-l), (9)

and the top-down pass is given by

f7(i) = (I + diag(:Ex~ -1 :Ex) _ ~ -1) -1 (I:x _ I)~ -1 ji,(i) . (10)

Substituting (10) into (9), we get the linear update for ji,:

ji,(i) = A-I X _ A-I (:E z _ I)A(I + diag(:Exci -l:Ex) _ c) -1) -1 (:Ex _ I)ci -1 ji, (i -l).

(11)

446 B.J. Frey

B[]Bga~Q~g[]
1.24 1.07 1.49 1.13 1.03 1.02 1.09 1.01 1.11 1.06

Figure 3: The error (log scale) versus number of iterations (log scale. max. of 1000) in 10
of the divergent networks with K = 5. N = 10. The means were initialized to the fixed point
solutions and machine round-off errors cause divergence from the fixed points. whose errors
are shown by horizontal lines.

The fixed point of this dynamic system, when it exists, is

ji,* = ~ (A~ + (tz - I)A(I + diag(I:xc) -ltx) - ~ -1) -\tx - I)) -1 x. (12)

A fixed point exists if the determinant of the expression in large braces in (12) is
nonzero. We have found a simplified expression for this determinant in terms of the
determinants of smaller, K x K matrices.

Reinterpreting the dynamics in (11) as dynamics for Aji,(i), the stability of a fixed
point is determined by the largest eigenvalue of the update matrix, (I:z - I)A (I +

- - -1 - - -1 -1 - - -1 - -1
diag(Exc}) Ex)-c})) (Ex-I)c}) A . If the modulus ofthe largest eigenvalue
is less than 1, the fixed point is stable. Since the system is linear, if a stable fixed
point exists, the system will be globally convergent to this point.

Of the 200,000 networks we explored, about 99.9% of the networks converged. For
10 of the divergent networks with K = 5, N = 10, we used 1000 iterations of prob­
ability propagation to compute the steady state variances. Then, we computed the
modulus of the largest eigenvalue of the system and we computed the fixed point.
After initializing the bottom-up means to the fixed point values, we performed 1000
iterations to see if numerical errors due to machine precision would cause divergence
from the fixed point. Fig. 3 shows the error versus number of iterations (on loga­
rithmic scales) for each network, the error of the fixed point, and the modulus of
the largest eigenvalue. In some cases, the network diverges from the fixed point and
reaches a dynamic equilibrium that has a lower average error than the fixed point.

3 Online factor analysis
To perform maximum likelihood factor analysis in an online fashion, each parameter
should be modified to slightly increase the log-probability of the current sensory
input,logp(x). However, since the factors are hidden, they must be probabilistically
"filled in" using inference before an incremental learning step is performed.

If the estimated mean and variance of the kth factor are Zk and Vk, then it turns
out (e.g., Neal and Dayan, 1997) the parameters can be updated as follows:

Ank f- Ank + l}[Zk(Xn - Ef=1 AnjZj) - VkAnk]/'ljln,

'IjIn f- (l-l})'ljln + l}[(xn - Ef=1 AnjZj)2 + Ef=1 VkA~j], (13)

where 1} is a learning rate.

Online learning consists of performing some number of iterations of probability prop­
agation for the current input (e.g., 4 iterations) and then modifying the parameters
before processing the next input.

3.1 Results on simulated data. We produced 95 training sets of 200 cases
each, with input sizes ranging from 20 sensors to 320 sensors. For each of 19 sizes
of factor analyzer, we randomly selected 5 sets of parameters as described above
and generated a training set. The factor analyzer sizes were K E {5, 10,20,40, 80},

Local Probability Propagation for Factor Analysis 447

Figure 4: (a) Achievable errors after the same number of epochs of learning using 4 iterations
versus 1 iteration. The horizontal axis gives the log-probability error (log scale) for learning with
1 iteration and the vertical axis gives the error after the same number of epochs for learning
with 4 iterations. (b) The achievable errors for learning using 4 iterations of propagation versus
wake-sleep learning using 4 iterations.

N E {20, 40, 80,160, 320}, N > K. For each factor analyzer and simulated data set,
we estimated the optimal log-probability of the data using 100 iterations of EM.

For learning, the size of the model to be trained was set equal to the size of the model
that was used to generate the data. To avoid the issue of how to schedule learning
rates, we searched for achievable learning curves, regardless of whether or not a
simple schedule for the learning rate exists. So, for a given method and randomly
initialized parameters, we performed one separate epoch of learning using each of
the learning rates, 1,0.5, ... ,0.520 and picked the learning rate that most improved
the log-probability. Each successive learning rate was determined by comparing the
performance using the old learning rate and one 0.75 times smaller.

We are mainly interested in comparing the achievable curves for different methods
and how the differences scale with K and N. For two methods with the same K
and N trained on the same data, we plot the log-probability error (optimal log­
probability minus log-probability under the learned model) of one method against
the log-probability error of the other method.

Fig. 4a shows the achievable errors using 4 iterations versus using 1 iteration. Usu­
ally, using 4 iterations produces networks with lower errors than those learned using
1 iteration. The difference is most significant for networks with large K, where in
Sec. 2.1 we found that the convergence of the inference error was slower.

Fig. 4b shows the achievable errors for learning using 4 iterations of probability
propagation versus wake-sleep learning using 4 iterations. Generally, probability
propagation achieves much smaller errors than wake-sleep learning, although for
small K wake-sleep performs better very close to the optimum log-probability. The
most significant difference between the methods occurs for large K, where aside
from local optima probability propagation achieves nearly optimal log-probabilities
while the log-probabilities for wake-sleep learning are still close to their values at
the start of learning.

4 Online face recognition
Fig. 1b shows examples from a set of 30,000 20 x 28 greyscale face images of 18
different people. In contrast to other data sets used to test face recognition methods,
these faces include wide variation in expression and pose. To make classification
more difficult, we normalized the images for each person so that each pixel has

448 B.J. Frey

the same mean and variance. We used probability propagation and a recognition
network in a factor analyzer to reduce the dimensionality of the data online from
560 dimensions to 40 dimensions. For probability propagation, we rather arbitrarily
chose a learning rate of 0.0001, but for wake-sleep learning we tried learning rates
ranging from 0.1 down to 0.0001. A multilayer perceptron with one hidden layer of
160 tanh units and one output layer of 18 softmax units was simultaneously being
trained using gradient descent to predict face identity from the mean factors. The
learning rate for the multilayer perceptron was set to 0.05 and this value was used
for both methods.

For each image, a prediction was made before the pa­
rameters were modified. Fig. 5 shows online error
curves obtained by filtering the losses. The curve for
probability propagation is generally below the curves
for wake-sleep learning.

The figure also shows the error curves for two forms of
online nearest neighbors, where only the most recent
W cases are used to make a prediction. The form of
nearest neighbors that performs the worst has W set so
that the storage requirements are the same as for the
factor analysis / multilayer perceptron method. The
better form of nearest neighbors has W set so that the
number of computations is the same as for the factor
analysis / multilayer perceptron method.

5 Summary

~

j
"' " \ ' i .. ',"--""~ \<',::,::'--, ... , ... ""

'. ~,

'.

Number of pattern presentations

Figure 5: Online error
curves for probability prop­
agation (solid), wake-sleep
learning (dashed), nearest
neighbors (dot-dashed)
and guessing (dotted).

It turns out that iterative probability propagation can be fruitful when used for
learning in a graphical model with cycles, even when the model is densely con­
nected. Although we are more interested in extending this work to more complex
models where exact inference takes exponential time, studying iterative probability
propagation in the factor analyzer allowed us to compare our results with exact in­
ference and allowed us to derive the fixed point of the algorithm. We are currently
applying iterative propagation in multiple cause networks for vision problems.

References
C. Berrou and A. Glavieux 1996. Near optimum error correcting coding and decoding:
Turbo-codes. IEEE TI-ans. on Communications, 44, 1261-1271.
P. Dayan, G. E. Hinton, R. M. Neal and R. S. Zemel 1995. The Helmholtz machine.
Neural Computation 1, 889-904.
B. J. Frey and D. J. C. MacKay 1998. A revolution: Belief propagation in graphs with
cycles. In M. Jordan, M. Kearns and S. Solla (eds), Advances in Neural Information
Processing Systems 10, Denver, 1997.
B. J. Frey 1998. Graphical Models for Machine Learning and Digital Communication.
MIT Press, Cambridge MA. See http://wvv.cs.utoronto.ca/-frey .

G. E. Hinton, P. Dayan, B. J. Frey and R. M. Neal 1995. The wake-sleep algorithm for
unsupervised neural networks. Science 268, 1158-1161.
D. J. C. MacKay 1999. Information Theory, Inference and Learning Algorithms. Book in
preparation, currently available at http://wol.ra.phy.cam.ac . uk/mackay.

R. M. Neal and P. Dayan 1997. Factor analysis using delta-rule wake-sleep learning. Neural
Computation 9, 1781-1804.
P. Smyth, R. J . McEliece, M. Xu, S. Aji and G. Horn 1997. Probability propagation in
graphs with cycles. Presented at the workshop on Inference and Learning in Graphical
Models, Vail, Colorado.
Y. Weiss 1998. Correctness of local probability propagation in graphical models. To
appear in Neural Computation.

