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Abstract 

We provide an abstract characterization of boosting algorithms as 
gradient decsent on cost-functionals in an inner-product function 
space. We prove convergence of these functional-gradient-descent 
algorithms under quite weak conditions. Following previous theo­
retical results bounding the generalization performance of convex 
combinations of classifiers in terms of general cost functions of the 
margin, we present a new algorithm (DOOM II) for performing a 
gradient descent optimization of such cost functions. Experiments 
on several data sets from the UC Irvine repository demonstrate 
that DOOM II generally outperforms AdaBoost, especially in high 
noise situations, and that the overfitting behaviour of AdaBoost is 
predicted by our cost functions. 

1 Introduction 

There has been considerable interest recently in voting methods for pattern classi­
fication, which predict the label of a particular example using a weighted vote over 
a set of base classifiers [10, 2, 6, 9, 16, 5, 3, 19, 12, 17, 7, 11, 8]. Recent theoretical 
results suggest that the effectiveness of these algorithms is due to their tendency 
to produce large margin classifiers [1, 18]. Loosely speaking, if a combination of 
classifiers correctly classifies most of the training data with a large margin, then its 
error probability is small. 

In [14] we gave improved upper bounds on the misclassification probability of a 
combined classifier in terms of the average over the training data of a certain cost 
function of the margins. That paper also described DOOM, an algorithm for di­
rectly minimizing the margin cost function by adjusting the weights associated with 
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each base classifier (the base classifiers are suppiled to DOOM). DOOM exhibits 
performance improvements over AdaBoost, even when using the same base hypothe­
ses, which provides additional empirical evidence that these margin cost functions 
are appropriate quantities to optimize. 

In this paper, we present a general class of algorithms (called AnyBoost) which 
are gradient descent algorithms for choosing linear combinations of elements of an 
inner product function space so as to minimize some cost functional. The normal 
operation of a weak learner is shown to be equivalent to maximizing a certain inner 
product. We prove convergence of AnyBoost under weak conditions. In Section 3, 
we show that this general class of algorithms includes as special cases nearly all 
existing voting methods. In Section 5, we present experimental results for a special 
case of AnyBoost that minimizes a theoretically-motivated margin cost functional. 
The experiments show that the new algorithm typically outperforms AdaBoost, and 
that this is especially true with label noise. In addition, the theoretically-motivated 
cost functions provide good estimates of the error of AdaBoost, in the sense that 
they can be used to predict its overfitting behaviour. 

2 AnyBoost 

Let (x, y) denote examples from X x Y, where X is the space of measurements 
(typically X ~ JRN) and Y is the space of labels (Y is usually a discrete set or some 
subset of JR). Let F denote some class of functions (the base hypotheses) mapping 
X -7 Y, and lin (F) denote the set of all linear combinations of functions in F. Let 
(,) be an inner product on lin (F), and 

C: lin (F) -7 ~ 

a cost functional on lin (F). 

Our aim is to find a function F E lin (F) minimizing C(F). We will proceed 
iteratively via a gradient descent procedure. 

Suppose we have some F E lin (F) and we wish to find a new f E F to add to F 
so that the cost C(F + Ef) decreases, for some small value of E. Viewed in function 
space terms, we are asking for the "direction" f such that C(F + Ef) most rapidly 
decreases. The desired direction is simply the negative of the functional derivative 
ofC at F, -\lC(F), where: 

\lC(F)(x) := aC(F + o:Ix) I ' (1) 
ao: 0:=0 

where Ix is the indicator function of x. Since we are restricted to choosing our new 
function f from F, in general it will not be possible to choose f = -\lC(F), so 
instead we search for an f with greatest inner product with -\lC(F). That is, we 
should choose f to maximize - (\lC(F), I). This can be motivated by observing 
that, to first order in E, C(F + Ef) = C(F) + E (\lC(F), f) and hence the greatest 
reduction in cost will occur for the f maximizing - (\lC(F), f). 

For reasons that will become obvious later, an algorithm that chooses f attempting 
to maximize - (\lC(F), f) will be described as a weak learner. 

The preceding discussion motivates Algorithm 1 (AnyBoost), an iterative algorithm 
for finding linear combinations F of base hypotheses in F that minimize the cost 
functional C (F). Note that we have allowed the base hypotheses to take values in 
an arbitrary set Y, we have not restricted the form of the cost or the inner product, 
and we have not specified what the step-sizes should be. Appropriate choices for 
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these things will be made when we apply the algorithm to more concrete situations. 
Note also that the algorithm terminates when - (\lC(Ft ), It+!) ~ 0, i.e when the 
weak learner C returns a base hypothesis It+l which no longer points in the downhill 
direction of the cost function C(F). Thus, the algorithm terminates when, to first 
order, a step in function space in the direction of the base hypothesis returned by 
C would increase the cost. 

Algorithm 1 : Any Boost 

Require: 
• An inner product space (X, (, )) containing functions mapping from X to 

some set Y. 
• A class of base classifiers F ~ X. 
• A differentiable cost functional C: lin (F) --+ III 
• A weak learner C(F) that accepts F E lin (F) and returns I E F with a 

large value of - (\lC(F), f). 
Let Fo(x) := O. 
for t := 0 to T do 

Let It+! := C(Ft ). 

if - (\lC(Ft ), It+!) ~ 0 then 
return Ft. 

end if 
Choose Wt+!. 
Let Ft+l := Ft + Wt+I!t+1 

end for 
return FT+I. 

3 A gradient descent view of voting methods 

We now restrict our attention to base hypotheses I E F mapping to Y = {± I}, 
and the inner product 

(2) 

for all F, G E lin (F), where S = {Xl, yt), . . . , (Xn, Yn)} is a set of training examples 
generated according to some unknown distribution 1) on X x Y. Our aim now is to 
find F E lin (F) such that Pr(x,y)"""Vsgn (F(x)) -=f. Y is minimal, where sgn (F(x)) = 
-1 if F (x) < 0 and sgn (F (x)) = 1 otherwise. In other words, sgn F should minimize 
the misclassification probability. 

The margin of F : X --+ R on example (x,y) is defined as yF(x). Consider margin 
cost-Iunctionals defined by 

1 m 
C(F) := - L C(YiF(Xi)) 

m i=l 

where c: R --+ R is any differentiable real-valued function of the margin. With these 
definitions, a quick calculation shows: 

1 m 
- (\lC(F), I) = -2 LYd(Xi)C'(YiF(Xi)). 

m i=l 

Since positive margins correspond to examples correctly labelled by sgn F and neg­
ative margins to incorrectly labelled examples, any sensible cost function of the 
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Table 1: Existing voting methods viewed as AnyBoost on margin cost functions. 

Algorithm Cost function Step size 
AdaBoost [9] e-yF(x) Line search 
ARC-X4 [2] (1 - yF(x))" 1ft 
ConfidenceBoost [19] e yF(x) Line search 
LogitBoost [12] In(l + e-yl«X») Newton-Raphson 

margin will be monotonically decreasing. Hence -C'(YiF(Xi)) will always be posi­
tive. Dividing through by - 2:::1 C'(YiF(Xi)), we see that finding an I maximizing 
- ('\1 C (F), f) is equivalent to finding an I minimizing the weighted error 

L D(i) where for i = 1, ... ,m. 
i: f(Xi):f;Yi 

Many of the most successful voting methods are, for the appropriate choice of margin 
cost function c and step-size, specific cases of the AnyBoost algorithm (see Table 3). 
A more detailed analysis can be found in the full version of this paper [15]. 

4 Convergence of Any Boost 

In this section we provide convergence results for the AnyBoost algorithm, under 
quite weak conditions on the cost functional C. The prescriptions given for the 
step-sizes Wt in these results are for convergence guarantees only: in practice they 
will almost always be smaller than necessary, hence fixed small steps or some form 
of line search should be used. 

The following theorem (proof omitted, see [15]) supplies a specific step-size for 
AnyBoost and characterizes the limiting behaviour with this step-size. 

Theorem 1. Let C: lin (F) -7 ~ be any lower bounded, Lipschitz differentiable 
cost functional (that is, there exists L > 0 such that II'\1C(F)- '\1C(F')1I :::; LIIF-F'II 
lor all F, F' E lin (F)). Let Fo, F l , ... be the sequence 01 combined hypotheses 
generated by the AnyBoost algorithm, using step-sizes 

('\1C(Ft ), It+!) 
Wt+1 := - Lll/t+!112 . (3) 

Then AnyBoost either halts on round T with - ('\1C(FT ), IT+1) :::; 0, or C(Ft) 
converges to some finite value C*, in which case limt-+oo ('\1C(Ft ), It+l) = O. 

The next theorem (proof omitted, see [15]) shows that if the weak learner can 
always find the best weak hypothesis It E F on each round of AnyBoost, and if 
the cost functional C is convex, then any accumulation point F of the sequence 
(Ft) generated by AnyBoost with the step sizes (3) is a global minimum of the 
cost. For ease of exposition, we have assumed that rather than terminating when 
- ('\1C(FT), h+l) :::; 0, AnyBoost simply continues to return FT for all subsequent 
time steps t. 

Theorem 2. Let C: lin (F) -7 ~ be a convex cost functional with the properties 
in Theorem 1, and let (Ft) be the sequence 01 combined hypotheses generated by 
the AnyBoost algorithm with step sizes given by (3). Assume that the weak hypoth­
esis class F is negation closed (f E F ===} - I E F) and that on each round 
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the AnyBoost algorithm finds a function fHl maximizing - (V'C(Ft ), ft+l)· Then 
any accumulation point F of the sequence (Ft) satisfies sUP/EF - (V'C(F), f) = 
0, and C(F) = infGElin(F) C(G). 

5 Experiments 

AdaBoost had been perceived to be resistant to overfitting despite the fact that 
it can produce combinations involving very large numbers of classifiers. However, 
recent studies have shown that this is not the case, even for base classifiers as 
simple as decision stumps [13, 5, 17]. This overfitting can be attributed to the use 
of exponential margin cost functions (recall Table 3). 

The results in in [14] showed that overfitting may be avoided by using margin cost 
functionals of a form qualitatively similar to 

1 m 
C(F) = - 2: 1 - tanh(>'YiF(xi)), 

m i=l 

(4) 

where >. is an adjustable parameter controlling the steepness of the margin cost 
function c(z) = 1 - tanh(>.z). For the theoretical analysis of [14] to apply, F 
must be a convex combination of base hypotheses, rather than a general linear 
combination. Henceforth (4) will be referred to as the normalized sigmoid cost 
functional. AnyBoost with (4) as the cost functional and (2) as the inner product 
will be referred to as DOOM II. In our implementation of DOOM II we use a 
fixed small step-size € (for all of the experiments € = 0.05). For all details of the 
algorithm the reader is referred to the full version of this paper [15]. 

We compared the performance of DOOM II and AdaBoost on a selection of nine 
data sets taken from the VCI machine learning repository [4] to which various levels 
of label noise had been applied. To simplify matters, only binary classification 
problems were considered. For all of the experiments axis orthogonal hyperplanes 
(also known as decision stumps) were used as the weak learner. Full details of 
the experimental setup may be found in [15]. A summary of the experimental 
results is shown in Figure 1. The improvement in test error exhibited by DOOM 
II over AdaBoost is shown for each data set and noise level. DOOM II generally 
outperforms AdaBoost and the improvement is more pronounced in the presence of 
label noise. 

The effect of using the normalized sigmoid cost function rather than the exponential 
cost function is best illustrated by comparing the cumulative margin distributions 
generated by AdaBoost and DOOM II. Figure 2 shows comparisons for two data 
sets with 0% and 15% label noise applied. For a given margin, the value on the 
curve corresponds to the proportion of training examples with margin less than or 
equal to this value. These curves show that in trying to increase the margins of 
negative examples AdaBoost is willing to sacrifice the margin of positive examples 
significantly. In contrast, DOOM II 'gives up' on examples with large negative 
margin in order to reduce the value of the cost function. 

Given that AdaBoost does suffer from overfitting and is guaranteed to minimize an 
exponential cost function of the margins, this cost function certainly does not relate 
to test error. How does the value of our proposed cost function correlate against 
AdaBoost's test error? Figure 3 shows the variation in the normalized sigmoid 
cost function, the exponential cost function and the test error for AdaBoost for 
two VCI data sets over 10000 rounds. There is a strong correlation between the 
normalized sigmoid cost and AdaBoost's test error. In both data sets the minimum 
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Figure 1: Summary oft est error advantage (with standard error bars) of DOOM II 
over AdaBoost with varying levels of noise on nine VCI data sets. 
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Figure 2: Margin distributions for AdaBoost and DOOM II with 0% and 15% label 
noise for the breast-cancer and splice data sets. 

of AdaBoost's test error and the mlllimum of the normalized sigmoid cost very 
nearly coincide, showing that the sigmoid cost function predicts when AdaBoost 
will start to overfit. 
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