
An Improved Decomposition Algorithm 
for Regression Support Vector Machines 

Pavel Laskov 
Department of Computer and Information Sciences 

University of Delaware 
Newark, DE 19718 

laskov@asel. udel. edu 

Abstract 

A new decomposition algorithm for training regression Support 
Vector Machines (SVM) is presented. The algorithm builds on 
the basic principles of decomposition proposed by Osuna et. al ., 
and addresses the issue of optimal working set selection. The new 
criteria for testing optimality of a working set are derived. Based 
on these criteria, the principle of "maximal inconsistency" is pro­
posed to form (approximately) optimal working sets. Experimental 
results show superior performance of the new algorithm in compar­
ison with traditional training of regression SVM without decompo­
sition. Similar results have been previously reported on decomposi­
tion algorithms for pattern recognition SVM. The new algorithm is 
also applicable to advanced SVM formulations based on regression, 
such as density estimation and integral equation SVM. 

1 Introd uction 

The increasing interest in applications of Support Vector Machines (SVM) to large­
scale problems ushers in new requirements for computational complexity of their 
training algorithms. Requests have been recently made for algorithms capable of 
handling problems containing 105 - 106 examples [1]. Training an SVM constitutes 
a quadratic programming problem, and a typical SVM package uses an off-the-shelf 
optimization software to obtain a solution to it. The number of variables in the 
optimization problem is equal to the number of training data points (for the pattern 
recognition SVM) or twice that number (for the regression SVM). The speed of 
general-purpose optimization methods is insufficient for problems containing more 
than a few thousand examples. This has motivated a quest for special-purpose 
training algorithms to take advantage of the particular structure of SVM training 
problems. 

The main avenue of research in SVM training algorithms is decomposition. The key 
idea of decomposition, due to Osuna et. al. [2], is to freeze all but a small number of 
optimization variables, and to solve a sequence of small fixed-size problems. The set 
of variables whose values are optimized at a current iteration is called the working 
set. Complexity of re-optimizing the working set is assumed to be constant-time. 



An Improved Decomposition Algorithm for Regression Support Vector Machines 485 

In order for a decomposition algorithm to be successful) the working set must be 
selected in a smart way. The fastest known decomposition algorithm is due to 
Joachims [3]. It is based on Zoutendijk)s method of feasible directions proposed in 
the optimization community in the early 1960)s. However Joachims) algorithm is 
limited to pattern recognition SVM because it makes use of labels being ±l. The 
current article presents a similar algorithm for the regression SVM. 

The new algorithm utilizes a slightly different background from optimization the­
ory. The Karush-Kuhn-Tucker Theorem is used to derive conditions for determining 
whether or not a given working set is optimal. These conditions become the algo­
rithm)s termination criteria) as an alternative to Osuna)s criteria (also used by 
Joachims without modification) which used conditions for individual points. The 
advantage of the new conditions is that knowledge of the hyperplane)s constant 
factor b) which in some cases is difficult to compute) is not required. Further inves­
tigation of the new termination conditions allows to form the strategy for selecting 
an optimal working set. The new algorithm is applicable to the pattern recognition 
SVM) and is provably equivalent to Joachims) algorithm. One can also interpret 
the new algorithm in the sense of the method of feasible directions. Experimental 
results presented in the last section demonstrate superior performance of the new 
method in comparison with traditional training of regression SVM. 

2 General Principles of Regression SVM Decomposition 

The original decomposition algorithm proposed for the pattern recognition SVM in 
[2] has been extended to the regression SVM in [4]. For the sake of completeness 
I will repeat the main steps of this extension with the aim of providing terse and 
streamlined notation to lay the ground for working set selection. 

Given the training data of size I) training of the regression SVM amounts to solving 
the following quadratic programming problem in 21 variables: 

Maximize W(a) 

subject to: eTa 

a-Ct < 
a > 

where 

-T- 1- TD -y 0: - -0: 0: 
2 

0 
0 

0 

K 
-K 

(1) 

The basic idea of decomposition is to split the variable vector a into the working set 
aB of fixed size q and the non-working set aN containing the rest ofthe variables. 
The corresponding parts of vectors e and y will also bear subscripts Nand B . The 
matrix D is partitioned into D BB ) DBN = D~B and D NN . A further requirement 
is that) for the i-th element of the training data) both 0i and 0; are either included 
in or omitted from the working set.l The values of the variables in the non-working 
set are frozen for the iteration) and optimization is only performed with respect to 
the variables in the working set. 

Optimization of the working set is also a quadratic program. This can be seen 
by re-arranging the terms of the objective function and the equality constraint in 

IThis rule facilitates formulation of sub-problems to be solved at each iteration. 



486 P. Laskov 

(1) and dropping the terms independent of o.B from the objective. The resulting 
quadratic program (sub-problem) is formulated as follows: 

Maximize 

subject to: T - T-
CBQB +cNQN 

o.B - Cl 

-T -T - 1 -T -
(YB - QNDNB)QB - 'iQBDBBQB 

a 
< 0 
> 0 

(2) 

The basic decomposition algorithm chooses the first working set at random, and 
proceeds iteratively by selecting sub-optimal working sets and re-optimizing them, 
by solving quadratic program (2), until all subsets of size q are optimal. The precise 
formulation of termination conditions will be developed in the following section. 

3 Optimality of a Working Set 

In order to maintain strict improvement of the objective function, the working 
set must be sub-optimal before re-optimization. The classical Karush-Kuhn-Tucker 
(KKT) conditions are necessary and sufficient for optimality of a quadratic program. 
I will use these conditions applied to the standard form of a quadratic program, as 
described in [5], p. 36. 

The standard form of a quadratic program requires that all constraints are of equal­
ity type except for non-negativity constraints. To cast the refression SVM quadratic 
program (1) into the standard form, the slack variables s = (81 , '" ,82l) corre­
sponding to the box constraints, and the following matrices are introduced: 

I 0] 
o I ' E = [f], z = m ' (3) 

where 1 is a vector of length I , C is a vector of length 21. The zero element in vector 
z reflects the fact that a slack variable for the equality constraint must be zero. In 
the matrix notation all constraints of problem (1) can be compactly expressed as: 

ETz f 

z > 0 
(4) 

In this notation the Karush-Kuhn-Tucker Theorem can be stated as follows: 

Theorem 1 (Karush-Kuhn-Tucker Theorem) The primal vector z solves the 
quadratic problem (1) if and only if it satisfies (4) and there exists a dual vector 
u T = (ITT w T ) = (ITT (I' yT» such that: 

IT = DO. + Ew - Y > 0 (5) 
Y ~ 0 (6) 

u T z = a (7) 

It follows from the Karush-Kuhn-Tucker Theorem that if for all u satisfying con­
ditions (6) - (7) the system of inequalities (5) is inconsistent then the solution of 
problem (1) is not optimal. Since the objective function of sub-problem (2) was 
obtained by merely re-arranging terms in the objective function of the initial prob­
lem (1), the same conditions guarantee that the sub-problem (2) is not optimal. 
Thus, the main strategy for identifying sub-optimal working sets will be to enforce 
inconsistency of the system (5) while satisfying conditions (6) - (7) . 



An Improved Decomposition Algorithm for Regression Support Vector Machines 487 

Let us further analyze inequalities in (5). Each inequality has one of the following 
forms: 

where 

7T'i -rPi + E + Vi + J.L > 0 

rPi + E - v; - J.L > 0 

I 

rPi = Yi - 2:)aj - a;)Kij 
j=l 

Consider the values ai can possible take: 

(8) 

(9) 

1. ai = O. In this case Si = C, and, by complementarity condition (7), Vi = O. 
Then inequality (8) becomes: 

7T'i = -rPi + E + J.L ~ 0 ~ J.L ~ rPi - E 

2. ai = C. By complementarity condition (7), 7T'i = O. Then inequality (8) 
becomes: 

-rPi + E + J.L + Vi = 0 ~ J.L::; rPi - E 

3. 0 < ai < C. By complementarity condition (7), Vi = 0, 7T'i = O. Then 
inequality (8) becomes: 

- rPi + E + J.L = 0 ~ J.L = rPi - E 

Similar reasoning for a; and inequality (9) yields the following results: 

1. a; = O. Then 

2. a; = C. Then 

3. 0 < a; < C. Then 

As one can see, the only free variable in system (5) is J.L. Each inequality restricts 
J.L to a certain interval on a real line. Such intervals will be denoted as J.L-sets in 
the rest of the exposition. Any subset of inequalities in (5) is inconsistent if the 
intersection of the corresponding J.L-sets is empty. This provides a lucid rule for 
determining optimality of any working set: it is sub-optimal if the intersection of 
J.L-sets of all its points is empty. A sub-optimal working set will also be denoted as 
"inconsistent". The following summarizes the rules for calculation of J.L-sets, taking 
into account that for regression SVM aia; = 0: 

[rPi - E, rPi + E], if ai = 0, a; = 0 

[rPi - E, rPi - E], if 0 < ai < C, a; = 0 

(-00, rPi - E], 

[rPi + E, rPi + E], 

[rPi + E, +(0), 

if ai = C, a; = 0 

if ai = 0, 0 < a; < C 

(10) 



488 P. Laskov 

4 Maximal Inconsistency Algorithm 

While inconsistency of the working set at each iteration guarantees convergence of 
decomposition, the rate of convergence is quite slow if arbitrary inconsistent working 
sets are chosen. A natural heuristic is to select "maximally inconsistent" working 
sets, in a hope that such choice would provide the greatest improvement of the 
objective function. The notion of "maximal inconsistency" is easy to define: let it 
be the gap between the smallest right boundary and the largest left boundary of 
p-sets of elements in the training set: 

G=L-R 
L = max pL R = min pr 

O<i<l O<i<l 1 

where p!, pi are the left and the right boundaries respectively (possibly minus or 
plus infinity) of the p-set Mi. It is convenient to require that the largest possible 
inconsistency gap be maintained between all pairs of points comprising the working 
set. The obvious implementation of such strategy is to select q/2 elements with the 
largest values of pi and q/2 elements with the smallest values of pr. The maximal 
inconsistency strategy is summarized in Algorithm 1. 

Algorithm 1 Maximal inconsistency SVM decomposition algorithm. 

Let S be the list of all samples. 
while (L > R) 

• compute Mi according to the rules (10) for all elements in S 

• select q/2 elements with the largest values of pi ("left pass") 

• select q /2 elements with the smallest values of p r ("right pass") 

• re-optimize the working set 

Although the motivation provided for the maximal inconsistency algorithm is purely 
heuristic, the algorithm can be rigorously derived, in a similar fashion as Joachims' 
algorithm, from Zoutendijk's feasible direction problem. Details of such derivation 
cannot be presented here due to space constraints. Because of this relationship I 
will further refer to both algorithms as "feasible direction" algorithms. 

5 Experimental Results 

Experimental evaluation of the new algorithm was performed on the mod­
ified KDD Cup 1998 data set. The original data set is available under 
http:j /www.ics.uci.edu/"-'kdd/databases/kddcup98/kddcup98.html. The following 
modifications were made to obtain a pure regression problem: 

• All 75 character fields were eliminated. 

• Numeric fields CONTROLN, ODATEDW, TCODE and DOB were elimi­
tated. 

The remaining 400 features and the labels were scaled between 0 and 1. Initial 
subsets of the training database of different sizes were selected for evaluation of the 
scaling properties of the new algorithm. The training times of the algorithms, with 
and without decomposition, the numbers of support vectors, including bounded 
support vectors, and the experimental scaling factors, are displayed in Table 1. 



An Improved Decomposition Algorithm for Regression Support Vector Machines 489 

Table 1: Training time (sec) and number of SVs for the KDD Cup problem 
Examples no dcmp dcmp total SV BSV 

500 39 10 274 0 
1000 226 41 518 3 
2000 1490 158 970 5 
3000 5744 397 1429 7 
5000 27052 1252 2349 15 

scaling factor: 2.84 2.08 
SV-scaling factor: 3.06 2.24 

Table 2: Training time (sec) and number of SVs for the KDD Cup problem, reduced 
feature space. 

Examples no dcmp dcmp total SV BSV 

500 56 18 170 30 
1000 346 44 374 62 
2000 1768 198 510 144 
3000 4789 366 729 222 
5000 22115 863 1139 354 

scaling factor: 2.55 1.72 
SV-scaling factor: 3.55 2.35 

The experimental scaling factors are obtained by fitting lines to log-log plots of the 
running times against sample sizes, in the number of examples and the number 
of unbounded support vectors respectively. Experiments were run on SGI Octane 
with 195MHz clock and 256M RAM. RBF kernel with, = 10, C = 1, termination 
accuracy 0.001, working set size of 20, and cache size of 5000 samples were used. 

A similar experiment was performed on a reduced feature set consisting of the first 
50 features selected from the full-size data set. This experiment illustrates the 
behavior of the algorithms when the large number of support vectors are bounded. 
The results are presented in Table 2. 

6 Discussion 

It comes at no surprise that the decomposition algorithm outperforms the conven­
tional training algorithm by an order of magnitude. Similar results have been well 
established for pattern recognition SVM. Remarkable is the co-incidence of scaling 
factors of the maximal inconsistency algorithm and Joachims' algorithm: his scaling 
factors range from 1.7 to 2.1 [3]. I believe however, that a more important perfor­
mance measure is SV -scaling factor, and the results above suggest that this factor 
is consistent even for problems with significantly different compositions of support 
vectors. Further experiments should investigate properties of this measure. 

Finally, I would like to mention other methods proposed in order to speed-up train­
ing of SVM, although no experimental results have been reported for these methods 
with regard to training of the regression SVM. Chunking [6], p. 366, iterates through 



490 P. Laskov 

the training data accumulating support vectors and adding a "chunk" of new data 
until no more changes to a solution occur. The main problem with this method is 
that when the percentage of support vectors is high it essentially solves the problem 
of almost the same size more than once. Sequential Minimal Optimization (SMO), 
proposed by Platt [7] and easily extendable to the regression SVM [1], employs an 
idea similar to decomposition but always uses the working set of size 2. For such 
a working set, a solution can be calculated "by hand" without numerical optimiza­
tion. A number of heuristics is applied in order to choose a good working set. It 
is difficult to draw a comparison between the working set selection mechanisms of 
SMO and the feasible direction algorithms but experimental results of Joachims [3] 
suggest that SMO is slower. Another advantage of feasible direction algorithms is 
that the size of the working set is not limited to 2, as in SMO. Practical experience 
shows that the optimal size of the working set is between 10 and 100. Lastly, tradi­
tional optimization methods, such as Newton's or conjugate gradient methods, can 
be modified to yield the complexity of 0(s3), where s is the number of detected 
support vectors [8]. This can be a considerable improvement over the methods that 
have complexity of 0(13), where 1 is the total number of training samples. 

The real challenge lies in attaining sub-0(s3) complexity. While the experimen­
tal results suggest that feasible direction algorithms might attain such complexity, 
their complexity is not fully understood from the theoretical point of view. More 
specifically, the convergence rate, and its dependence on the number of support 
vectors, needs to be analyzed. This will be the main direction of the future research 
in feasible direction SVM training algorithms. 

References 

[1] Smola, A., Sch61kopf, B. (1998) A Tutorial on Support Vector Regression. 
NeuroCOLT2 Technical Report NC2- TR-1998-030. 

[2] Osuna, E., Freund, R., Girosi, F. (1997) An Improved Training Algorithm for 
Support Vector Machines. Proceedings of IEEE NNSP'97. Amelia Island FL. 

[3] Joachims, T. (1998) Making Large-Scale SVM Learning Practical. Advances in 
Kernel Methods - Support Vector Learning. B. Sch61kopf, C. Burges, A. Smola, 
(eds.) MIT-Press. 

[4] Osuna, E. (1998) Support Vector Machines: Training and Applications. Ph. D. 
Dissertation. Operations Research Center, MIT. 

[5] Boot, J. (1964) Quadratic Programming. Algorithms - Anomalies - Applica­
tions. North Holland Publishing Company, Amsterdam. 

[6] Vapnik, V. (1982) Estimation of Dependencies Based on Empirical Data. 
Springer-Verlag. 

[7] Platt, J. (1998) Fast Training of Support Vector Machines Using Sequential 
Minimal Optimization. Advances in Kernel Methods - Support Vector Learning. 
B. Sch5lkopf, C. Burges, A. Smola, (eds.) MIT-Press. 

[8] Kaufman, L. (1998) Solving the Quadratic Programming Problem Arising in 
Support Vector Classification. Advances in Kernel Methods - Support Vector 
Learning. B. Sch5lkopf, C. Burges, A. Smola, (eds.) MIT-Press. 


