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Abstract 

This paper argues that two apparently distinct modes of generalizing con­
cepts - abstracting rules and computing similarity to exemplars - should 
both be seen as special cases of a more general Bayesian learning frame­
work. Bayes explains the specific workings of these two modes - which 
rules are abstracted, how similarity is measured - as well as why gener­
alization should appear rule- or similarity-based in different situations. 
This analysis also suggests why the rules/similarity distinction, even if 
not computationally fundamental, may still be useful at the algorithmic 
level as part of a principled approximation to fully Bayesian learning. 

1 Introduction 

In domains ranging from reasoning to language acquisition, a broad view is emerging of 
cognition as a hybrid of two distinct modes of computation, one based on applying abstract 
rules and the other based on assessing similarity to stored exemplars [7]. Much support for 
this view comes from the study of concepts and categorization. In generalizing concepts, 
people's judgments often seem to reflect both rule-based and similarity-based computations 
[9], and different brain systems are thought to be involved in each case [8]. Recent psycho­
logical models of classification typically incorporate some combination of rule-based and 
similarity-based modules [1,4]. In contrast to this currently popular modularity position, I 
will argue here that rules and similarity are best seen as two ends of a continuum of possible 
concept representations. In [11,12], I introduced a general theoretical framework to account 
for how people can learn concepts from just a few positive examples based on the principles 
of Bayesian inference. Here I explore how this framework provides a unifying explanation 
for these two apparently distinct modes of generalization. The Bayesian framework not only 
includes both rules and similarity as special cases but also addresses several questions that 
conventional modular accounts do not. People employ particular algorithms for selecting 
rules and measuring similarity. Why these algorithms as opposed to any others? People's 
generalizations appear to shift from similarity-like patterns to rule-like patterns in system­
atic ways, e.g., as the number of examples observed increases. Why these shifts? 

This short paper focuses on a simple learning game involving number concepts, in which 
both rule-like and similarity-like generalizations clearly emerge in the judgments of human 
subjects. Imagine that I have written some short computer programs which take as input a 
natural number and return as output either "yes" or "no" according to whether that number 
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satisfies some simple concept. Some possible concepts might be "x is odd", "x is between 
30 and 45", "x is a power of3", or"x is less than 10". For simplicity, we assume that only 
numbers under 100 are under consideration. The learner is shown a few randomly chosen 
positive examples - numbers that the program says "yes" to - and must then identify the 
other numbers that the program would accept. This task, admittedly artificial, nonetheless 
draws on people's rich knowledge of number while remaining amenable to theoretical anal­
ysis. Its structure is meant to parallel more natural tasks, such as word learning, that often 
require meaningful generalizations from only a few positive examples of a concept. 

Section 2 presents representative experimental data for this task. Section 3 describes a 
Bayesian model and contrasts its predictions with those of models based purely on rules or 
similarity. Section 4 summarizes and discusses the model 's applicability to other domains. 

2 The number concept game 

Eight subjects participated in an experimental study of number concept learning, under es­
sentially the same instructions as those given above [11]. On each trial, subj ects were shown 
one or more random positive examples of a concept and asked to rate the probability that 
each of 30 test numbers would belong to the same concept as the examples observed. X 
denotes the set of examples observed on a particular trial, and n the number of examples. 

Trials were designed to fall into one of three classes. Figure la presents data for two repre­
sentative trials of each class. Bar heights represent the average judged probabilities that par­
ticular test numbers fall under the concept given one or more positive examples X, marked 
by "*"s. Bars are shown only for those test numbers rated by subjects; missing bars do not 
denote zero probability of generalization, merely missing data. 

On class I trials, subjects saw only one example of each concept: e.g., X = {16} and X = 
{60}. To minimize bias, these trials preceded all others on which multiple examples were 
given. Given only one example, people gave most test numbers fairly similar probabilities 
of acceptance. Numbers that were intuitively more similar to the example received slightly 
higher ratings: e.g., for X = {16}, 8 was more acceptable than 9 or 6, and 17 more than 
87; for X = {60}, 50 was more acceptable than 51, and 63 more than 43. 

The remaining trials each presented four examples and occured in pseudorandom order. 
On class II trials, the examples were consistent with a simple mathematical rule: X = 
{16 , 8, 2, 64} or X = {60, 80, 10, 30}. Note that the obvious rules, "powers of two" and 
"multiples often", are in no way logically implied by the data. "Multiples offive" is a pos­
sibility in the second case, and "even numbers" or "all numbers under 80" are possibilities 
in both, not to mention other logically possible but psychologically implausible candidates, 
such as "all powers of two, except 32 or4". Nonetheless, subjects overwhelmingly followed 
an all-or-none pattern of generalization, with all test numbers rated near 0 or 1 according to 
whether they satisified the single intuitively "correct" rule. These preferred rules can be 
loosely characterized as the most specific rules (i.e., with smallest extension) that include 
all the examples and that also meet some criterion of psychological simplicity. 

On class III trials, the examples satisified no simple mathematical rule but did have sim­
ilar magnitudes: X = {16, 23 , 19, 20} and X = {60, 52, 57, 55} . Generalization now 
followed a similarity gradient along the dimension of magnitude. Probability ratings fell 
below 0.5 for numbers more than a characteristic distance e beyond the largest or smallest 
observed examples - roughly the typical distance between neighboring examples ("'" 2 or 
3). Logically, there is no reason why participants could not have generalized according to 
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various complex rules that happened to pick out the given examples, or according to very 
different values of~, yet all subjects displayed more or less the same similarity gradients. 

To summarize these data, generalization from a single example followed a weak similarity 
gradient based on both mathematical and magnitude properties of numbers. When several 
more examples were observed, generalization evolved into either an all-or-none pattern de­
termined by the most specific simple rule, or, when no simple rule applied, a more articu­
lated magnitude-based similarity gradient falling off with characteristic distance e roughly 
equal to the typical separation between neighboring examples. Similar patterns were ob­
served on several trials not shown (including one with a different value of e) and on two 
other experiments in quite different domains (described briefly in Section 4). 

3 The Bayesian model 

In [12], I introduced a Bayesian framework for concept learning in the context oflearn­
ing axis-parallel rectangles in a multidimensional feature space. Here I show that the same 
framework can be adapted to the more complex situation oflearning number concepts and 
can explain all of the phenomena of rules and similarity documented above. Formally, we 
observe n positive examples X = {x(1), ... , x(n)} of concept C and want to compute 
p(y E CIX), the probability that some new object y belongs to C given the observations 
X. Inductive leverage is provided by a hypothesis space 11. of possible concepts and a prob­
abilistic model relating hypotheses h to data X. 

The hypothesis space. Elements ofll. correspond to subsets of the universe of objects that 
are psychologically plausible candidates for the extensions of concepts. Here the universe 
consists of numbers between 1 and 100, and the hypotheses correspond to subsets such as 
the even numbers, the numbers between 1 and 10, etc. The hypotheses can be thought of 
in terms of either rules or similarity, i.e., as potential rules to be abstracted or as features 
entering into a similarity computation, but Bayes does not distinguish these interpretations. 

Because we can capture only a fraction of the hypotheses people might bring to this task, 
we would like an objective way to focus on the most relevant parts of people's hypothesis 
space. One such method is additive clustering (ADCLUS) [6,10], which extracts a setoffea­
tures that best accounts for subjects' similarity judgments on a given set of objects. These 
features simply correspond to subsets of objects and are thus naturally identified with hy­
potheses for concept learning. Applications of ADCLUS to similarity judgments for the 
numbers 0-9 reveal two kinds of subsets [6,10]: numbers sharing a common mathemati­
cal property, such as {2, 4, 8} and {3, 6, 9}, and consecutive numbers of similar magnitude, 
such as {I, 2, 3, 4} and {2, 3, 4, 5, 6}. Applying ADCLUS to the full set of numbers from 
1 to 100 is impractical, but we can construct an analogous hypothesis space for this domain 
based on the two kinds of hypotheses found in the ADCLUS solution for 0-9. One group 
of hypotheses captures salient mathematical properties: odd, even, square, cube, and prime 
numbers, multiples and powers of small numbers (~ 12), and sets of numbers ending in the 
same digit. A second group of hypotheses, representing the dimension of numerical mag­
nitude, includes all intervals of consecutive numbers with endpoints between 1 and 100. 

Priors and likelihoods. The probabilistic model consists of a prior p( h) over 11. and a like­
lihood p( X I h) for each hypothesis h E H. Rather than assigning prior probabilities to each 
ofthe 5083 hypotheses individually, I adopted a hierarchical approach based on the intuitive 
division of 11. into mathematical properties and magnitude intervals. A fraction A of the to­
tal probability was allocated to the mathematical hypotheses as a group, leaving (1 - A) for 
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the magnitude hypotheses. The ,\ probability was distributed uniformly across the mathe­
matical hypotheses. The (1 - ,\) probability was distributed across the magnitude intervals 
as a function of interval size according to an Erlang distribution, p( h) ex (Ihl/ li2 )e- 1hl /0', 
to capture the intuition that intervals of some intermediate size are more likely than those 
of very large or small size. ,\ and Ii are treated as free parameters of the model. 

The likelihood is determined by the assumption of randomly sampled positive examples. 
In the simplest case, each example in X is assumed to be independently sampled from a 
uniform density over the concept G. For n examples we then have: 

p(Xlh) l/lhl n if Vj, xU) E h 

o otherwise, 

(1) 

where I h I denotes the size of the subset h. For example, if h denotes the even numbers, then 
Ihl = 50, because there are 50 even numbers between I and 100. Equation I embodies the 
size principle for scoring hypotheses: smaller hypotheses assign greater likelihood than do 
larger hypotheses to the same data, and they assign exponentially greater likelihood as the 
number of consistent examples increases. The size principle plays a key role in learning 
concepts from only positive examples [12], and, as we will see below, in determining the 
appearance of rule-like or similarity-like modes of generalization. 

Given these priors and likelihoods, the posterior p( hlX) follows directly from Bayes' rule. 
Finally, we compute the probability of generalization to a new object y by averaging the 
predictions of all hypotheses weighted by their posterior probabilities p( h IX): 

p(y E GIX) = L p(y E Glh)p(hIX). (2) 
hE1i 

Equation 2 follows from the conditional independence of X and the membership of y E G, 
given h. To evaluate Equation 2, note that p(y E Glh) is simply 1 ify E h, and 0 otherwise. 

Model results. Figure Ib shows the predictions of this Bayesian model (with'\ = 1/2, 
Ii = 10). The model captures the main features of the data, including convergence to the 
most specific rule on Class II trials and to appropriately shaped similarity gradients on Class 
III trials. We can understand the transitions between graded, similarity-like and all-or-none, 
rule-like regimes of generalization as arising from the interaction of the size principle (Equa­
tion 1) with hypothesis averaging (Equation 2). Because each hypothesis h contributes to 
the average in Equation 2 in proportion to its posterior probability p(hIX), the degree of 
uncertainty in p(hIX) determines whether generalization will be sharp or graded. When 
p( h IX) is very spread out, many distinct hypotheses contribute significantly, resulting in a 
broad gradient of generalization. When p(hIX) is concentrated on a single hypothesis h*, 
only h* contributes significantly and generalization appears all-or-none. The degree of un­
certainty in p( h I X) is in tum a consequence of the size principle. Given a few examples con­
sistent with one hypothesis that is significantly smaller than the next-best competitor - such 
as X = {16, 8, 2, 64}, where "powers of two" is significantly smaller than "even numbers" 
- then the smallest hypothesis becomes exponentially more likely than any other and gener­
alization appears to follow this most specific rule. However, given only one example (such 
as X = {16}), or given several examples consistent with many similarly sized hypotheses­
such as X = {16, 23,19, 20}, where the top candidates are all very similar intervals: "num­
bers between 16 and 23", "numbers between 15 and 24", etc. - the size-based likelihood 
favors the smaller hypotheses only slightly, p(hIX) is spread out over many overlapping 
hypotheses and generalization appears to follow a gradient of similarity. That the Bayesian 
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model predicts the right shape for the magnitude-based similarity gradients on Class III trials 
is no accident. The characteristic distance € of the Bayesian generalization gradient varies 
with the uncertainty in p( h I X), which (for interval hypotheses) can be shown to covary with 
the intuitively relevant factor of average separation between neighboring examples. 

Bayes vs. rules or similarity alone. It is instructive to consider two special cases of the 
Bayesian model that are equivalent to conventional similarity-based and rule-based algo­
rithms from the concept learning literature. What I call the SIM algorithm was pioneered 
by [5] and also described in [2,3] as a Bayesian approach to learning concepts from both 
positive and negative evidence. SIM replaces the size-based likelihood with a binary likeli­
hood that measures only whether a hypothesis is consistent with the examples: p( X I h) :::: 1 
ifVj, xli) E h, and 0 otherwise. Generalization under SIM is just a count of the features 
shared by y and all the examples in X, independent of the frequency of those features or 
the number of examples seen. As Figure Ic shows, SIM successfully models generaliza­
tion from a single example (Class I) but fails to capture how generalization sharpens up after 
multiple examples, to either the most specific rule (Class II) or a magnitude-based similarity 
gradient with appropriate characteristic distance € (Class III). What I call the MIN algorithm 
preserves the size principle but replaces the step of hypothesis averaging with maximization: 
p(y E GIX) :::: 1 ify E arg maXh p(Xlh), and 0 otherwise. MIN is perhaps the oldest al­
gorithm for concept learning [3] and, as a maximum likelihood algorithm, is asymptotically 
equivalent to Bayes. Its success for finite amounts of data depends on how peaked p(hIX) 
is (Figure Id). MIN always selects the most specific consistent rule, which is reasonable 
when that hypothesis is much more probable than any other (Class II), but too conservative 
in other cases (Classes I and III). In quantitative terms, the predictions of Bayes correlate 
much more highly with the observed data (R2 :::: 0.91) than do the predictions of either SIM 
(R2 :::: 0.74) or MIN (R2 :::: 0.47). In sum, only the full Bayesian framework can explain 
the full range of rule-like and similarity-like generalization patterns observed on this task. 

4 Discussion 

Experiments in two other domains provide further support for Bayes as a unifying frame­
work for concept learning. In the context of multidimensional continuous feature spaces, 
similarity gradients are the default mode of generalization [5]. Bayes successfully mod­
els how the shape of those gradients depends on the distribution and number of examples; 
SIM and MIN do not [12]. Bayes also successfully predicts how fast these similarity gra­
dients converge to the most specific consistent rule. Convergence is quite slow in this do­
main (n "" 50) because the hypothesis space consists of densely overlapping subsets - axis­
parallel rectangles - much like the interval hypotheses in the Class III number tasks. 

Another experiment engaged a word-learning task, using photographs of real objects as 
stimuli and a cover story oflearning a new language [11]. On each trial, subjects saw ei­
ther one example of a novel word (e.g., a toy animal labeled with "Here is a blicket."), or 
three examples at one of three different levels of specificity: subordinate (e.g., 3 dalma­
tians labeled with "Here are three blickets."), basic (e.g., 3 dogs), or superordinate (e.g., 3 
animals). They then were asked to pick the other instances of that concept from a set of 
24 test objects, containing matches to the example(s) at all levels (e.g., other dalmatians, 
dogs, animals) as well as many non-matching objects. Figure 2 shows data and predictions 
for all three models. Similarity-like generalization given one example rapidly converged to 
the most specific rule after only three examples were observed, just as in the number task 
(Classes I and II) but in contrast to the axis-parallel rectangle task or the Class III num-
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ber tasks, where similarity-like responding was still the norm after three or four examples. 
For modeling purposes, a hypothesis space was constructed from a hierarchical clustering 
of subjects' similarity judgments (augmented by an a priori preference for basic-level con­
cepts) [11] . The Bayesian model successfully predicts rapid convergence from a similarity 
gradient to the minimal rule, because the smallest hypothesis consistent with each example 
set is significantly smaller than the next-best competitor (e.g., "dogs" is significantly smaller 
than "dogs and cats", just as with "multiples often" vs. "multiples of five"). Bayes fits the 
full data extremely well (R2 = 0.98); by comparison, SIM (R2 = 0.83) successfully ac­
counts for only the n = 1 trials and MIN (R2 = 0.76), the n = 3 trials. 

In conclusion, a Bayesian framework is able to account for both rule- and similarity-like 
modes of generalization, as well as the dynamics of transitions between these modes, across 
several quite different domains of concept learning. The key features of the Bayesian 
model are hypothesis averaging and the size principle. The former allows either rule-like 
or similarity-like behavior depending on the uncertainty in the posterior probability. The 
latter determines this uncertainty as a function of the number and distribution of examples 
and the structure ofthe learner's hypothesis space. With sparsely overlapping hypotheses 
- i.e., the most specific hypothesis consistent with the examples is much smaller than its 
nearest competitors - convergence to a single rule occurs rapidly, after just a few exam­
ples. With densely overlapping hypotheses - i.e., many consistent hypotheses of compara­
ble size - convergence to a single rule occurs much more slowly, and a gradient of similar­
ity is the norm after just a few examples. Importantly, the Bayesian framework does not so 
much obviate the distinction between rules and similarity as explain why it might be useful 
in understanding the brain. As Figures 1 and 2 show, special cases of Bayes correspond­
ing to the SIM and MIN algorithms consistently account for distinct and complementary 
regimes of generalization. SIM, without the size principle, works best given only one exam­
ple or densely overlappipg hypotheses, when Equation I does not generate large differences 
in likelihood. MIN, without hypothesis averaging, works best given many examples or 
sparsely overlapping hypotheses, when the most specific hypothesis dominates the sum over 
1i in Equation 2. In light of recent brain-imaging studies dissociating rule- and exemplar­
based processing [8], the Bayesian theory may best be thought of as a computational-level 
account of concept learning, with multiple subprocesses - perhaps subserving SIM and MIN 
- implemented in distinct neural circuits. I hope to explore this possibility in future work. 
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Figure 1: Data and model predictions for the number concept task. 
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Figure 2: Data and model predictions for the word learning task. 


