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Abstract 

We discuss an information theoretic approach for categorizing and mod­
eling dynamic processes. The approach can learn a compact and informa­
tive statistic which summarizes past states to predict future observations. 
Furthermore, the uncertainty of the prediction is characterized nonpara­
metrically by a joint density over the learned statistic and present obser­
vation. We discuss the application of the technique to both noise driven 
dynamical systems and random processes sampled from a density which 
is conditioned on the past. In the first case we show results in which both 
the dynamics of random walk and the statistics of the driving noise are 
captured. In the second case we present results in which a summarizing 
statistic is learned on noisy random telegraph waves with differing de­
pendencies on past states. In both cases the algorithm yields a principled 
approach for discriminating processes with differing dynamics and/or de­
pendencies. The method is grounded in ideas from information theory 
and nonparametric statistics. 

1 Introduction 

Noisy dynamical processes abound in the world - human speech, the frequency of sun 
spots, and the stock market are common examples. These processes can be difficult to 
model and categorize because current observations are dependent on the past in complex 
ways. Classical models come in two sorts: those that assume that the dynamics are linear 
and the noise is Gaussian (e.g. Weiner etc.); and those that assume that the dynamics are 
discrete (e.g. HMM's). These approach are wildly popular because they are tractable and 
well understood. Unfortunately there are many processes where the underlying theoretical 
assumptions of these models are false. For example we may wish to analyze a system 
with linear dynamics and non-Gaussian noise or we may wish to model a system with an 
unknown number of discrete states. 

We present an information-theoretic approach for analyzing stochastic dynamic processes 
which can model simple processes like those mentioned above, while retaining the flexi­
bility to model a wider range of more complex processes. The key insight is that we can 
often learn a simplifying informative statistic of the past from samples using non parametric 
estimates of both entropy and mutual information. Within this framework we can predict 
future states and, of equal importance, characterize the uncertainty accompanying those 
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predictions. This non-parametric model is flexible enough to describe uncertainty which 
is more complex than second-order statistics. In contrast techniques which use squared 
prediction error to drive learning are focused on the mode of the distribution. 

Taking an example from financial forecasting, while the most likely sequence of pricing 
events is of interest, one would also like to know the accompanying distribution of price 
values (i.e. even if the most likely outcome is appreciation in the price of an asset, knowl­
edge of lower, but not insignificant, probability of depreciation is also valuable). Towards 
that end we describe an approach that allows us to simultaneously learn the dependencies 
of the process on the past as well as the uncertainty of future states. Our approach is novel 
in that we fold in concepts from information theory, nonparametric statistics, and learning. 

In the two types of stochastic processes we will consider, the challenge is to summarize the 
past in an efficient way. In the absence of a known dynamical or probabilistic model, can 
we learn an informative statistic (ideally a sufficient statistic) of the past which minimizes 
our uncertainty about future states? In the classical linear state-space approach, uncertainty 
is characterized by mean squared error (MSE) which implicitly assume Gaussian statistics. 
There are, however, linear systems with interesting behavior due to non-Gaussian statistics 
which violate the assumption underlying MSE. There are also nonlinear systems and purely 
probabilistic processes which exhibit complex behavior and are poorly characterized by 
mean square error and/or the assumption of Gaussian noise. 

Our approach is applicable to both types of processes. Because it is based on non­
parametric statistics we characterize the uncertainty of predictions in a very general way: 
by a density of possible future states. Consequently the resulting system captures both the 
dynamics of the systems (through a parameterization) and the statistics of driving noise 
(through a non parametric modeling). The model can then be used to classify new signals 
and make predictions about the future. 

2 Learning from Stationary Processes 

In this paper we will consider two related types of stochastic processes, depicted in figure I. 
These processes differ in how current observations are related to the past. The first type of 
process, described by the following set of equations, is a discrete time dynamical (possibly 
nonlinear) system: 

Xk =G({Xk-t}N ;Wg)+rJk ; {xk}N={Xk, .. . , Xk-(N - l}} (I) 

where, .T k, the state of the process at time k, is a function of the N previous states and 
the present value of rJ. In general the sequence {Xk} is not stationary (in the strict sense); 
however, under fairly mild conditions on {rJk}, namely that {rJk} is a sequence of i.i.d. 
random variables (which we will always assume to be true), the sequence: 

€k = Xk - G({Xk-t}N;Wg) (2) 

is stationary. Often termed an innovation sequence, for our purpose the stationarity of 2 will 
suffice. This leads to a prediction framework for estimating the dynamical parameters, wg , 

of the system and to which we will adjoin a nonparametric characterization of uncertainty. 

The second type of process we consider is described by a conditional probability density : 

Xk "'p(xkl l{Xk-t}N) (3) 

In this case it is only the conditional statistics of {Xk} that we are concerned with and they 
are, by definition, constant. 

3 Learning Informative Statistics with Nonparametric Estimators 

We propose to determine the system parameters by minimizing the entropy of the error 
residuals for systems of type (a). Parametric entropy optimization approaches have been 
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Figure I: Two related systems: (a) dynamical system driven by stationary noise and (b) 
probabilistic system dependent on the finite past. Dotted box indicates source of stochastic 
process, while solid box indicates learning algorithm 

proposed (e.g. [4]), the novelty of our approach; however, is that we estimate entropy 
nonparametrically. That is, 

where the differential entropy integral is approximated using a function of the Parzen kernel 
density estimator [51 (in all experiments we use the Gaussian kernel). It can be shown that 
minimizing the entropy of the error residuals is equivalent to maximizing their likelihood 
[11. In this light, the proposed criterion is seeking the maximum likelihood estimate of the 
system parameters using a nonparametric description of the noise density. Consequently, 
we solve for the system parameters and the noise density jointly. 

While there is no explicit dynamical system in the second system type we do assume that 
the conditional statistics of the observed sequence are constant (or at worst slowly changing 
for an on-line learning algorithm). In this case we desire to minimize the uncertainty of 
predictions from future samples by summarizing information from the past. The challenge 
is to do so efficiently via a function of recent samples. Ideally we would like to find a 
sufficient statistic of the past; however, without an explicit description of the density we 
opt instead for an informative statistic. By informative statistic we simply mean one which 
reduces the conditional entropy of future samples. If the statistic were sufficient then the 
mutual information has reached a maximum [1]. As in the previous case, we propose to 
find such a statistic by maximizing the nonparametric mutual information as defined by 

arg min i (x k, F ( { x k -1 } N; W f) ) 
Wf 

(5) 

argmin H(Xk) + H(F({ };Wj)) - H(XbF({ };Wj))) 
Wf 

(6) 

= (7) 

By equation 6 this is equivalent to optimizing the joint and marginal entropies (which we 
do in practice) or, by equation 7, minimizing the conditional entropy. 

We have previously presented two related methods for incorporating kernel based density 
estimators into an information theoretic learning framework [2, 3]. We chose the method of 
[3J because it provides an exact gradient of an approximation to entropy, but more impor­
tantly can be converted into an implicit error function thereby reducing computation cost. 
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4 Distinguishing Random Walks: An Example 

In random walk the feedback function G( {Xk-l} 1) = Xk-l. The noise is assumed to be in­
dependent and identically distributed (i.i.d.). Although the sequence,Xk, is non-stationary 
the increments (Xk-Xk-l) are stationary. In this context, estimating the statistics of the 
residuals allows for discrimination between two random walk process with differing noise 
densities. Furthermore, as we will demonstrate empiricalIy, even when one of the pro­
cesses is driven by Gaussian noise (an implicit assumption of the MMSE criterion), such 
knowledge may not be sufficient to distinguish one process from another. 

Figure 2 shows two random walk realizations and their associate noise densities (solid 
lines). One is driven by Gaussian noise (17k rv N (O, l), while the other is driven by 
a bi-modal mixture of gaussians ('17k rv 1N(0.95,0.3) + 4N( -0.95, 0.3) (note: both 
densities are zero-mean and unit variance). During learning, the process was modeled as 
fifth-order auto-regressive (AR5 ). One hundred samples were drawn from a realization of 
each type and the AR parameters were estimated using the standard MMSE approach and 
the approach described above. With regards to parameter estimation, both methods (as 
expected) yield essentially the same parameters with the first coefficient being near unity 
and the remaining coefficients being near zero. 

We are interested in the ability to distinguish one process from another. As mentioned. 
the current approach jointly estimates the parameters of the system as weII as the den­
sity of the noise. The nonparametric estimates are shown in figure 2 (dotted lines) . 
These estimates are then be used to compute the accumulated average log-likelihood 

(L(EI.:) = t I:7=110gp(:ri ) of the residual sequence (Ek ;:::; r/k) under the known and 
learned densities (figure 3). It is striking (but not surprising) that L( Ek) of the bi-modal 
mixture under the Gaussian model (dashed lines, top) does not differ significantly from the 
Gaussian driven increments process (solid lines, top). The explanation follows from the 
fact that 

(8) 

where Pf (€) is the true density of € (bi-modal), p( €) is the assumed density of the likelihood 
test (unit-variance Gaussian), and D( II) is the KuIlback-Leibler divergence [I). In this 
case, D(p(E)l lpf( E)) is relatively small (not true for D(Pf (C) ll p(E») and H(Pf (C)) is less 
than the entropy of the unit-variance Gaussian (for fixed variance, the Gaussian density 
has maximum entropy). The consequence is that the likelihood test under the Gaussian 
assumption does not reliably distinguish the two processes. The likelihood test under the 
bi-modal density or its nonparametric estimate (figure 3, bottom) does distinguish the two. 

The method described is not limited to linear dynamic models. It can certainly be used 
for nonlinear models, so long as the dynamic can be well approximated by differentiable 
functions. Examples for multi-layer perceptrons are described in [3]. 

5 Learning the Structure of a Noisy Random Telegraph Wave 

A noisy random telegraph wave (RTW) can be described by figure 1 (b). Our goal is not to 
demonstrate that we can analyze random telegraph waves, rather that we can robustly learn 
an informative statistic of the past for such a process. We define a noisy random telegraph 
wave as a sequence Xk rv N (J.Lk, (J) where 11k is binomially distributed: 

{± } P{ _ } _ 1 *,~ ;V= l x k-, 1 
J.Lk E J.L J.Lk - -J.Lk-l - a *' ~!I IX k - . I' (9) 

N (J.Lk , (J) is Gaussian and a < 1. This process is interesting because the parameters are 
random functions of a nonlinear combination of the set {Xk} N. Depending on the value of 
N, we observe different switching dynamics. Figure 4 shows examples of such signals for 
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Figure 2: Random walk examples (left), comparison of known to learned densities (right). 

Figure 3: L(€k) under known models (left) as compared to learned models (right). 

N = 20 (left) and N = 4 (right). Rapid switching dynamics are possible for both signals 
while N = 20 has periods with longer duration than N = 4. 

Figure 4: Noisy random telegraph wave: N = 20 (left), N = 4 (right) 

In our experiments we learn a sufficient statistic which has the form 

F({x.}past) ~ q (t W/;Xk-.) , (to) 

where u( ) is the hyperbolic tangent function (i.e. P{ } is a one layer perceptron). Note 
that a multi-layer perceptron could also be used [3]. 

In our experiments we train on 100 samples of noisy RTW(N=2o) and RTW(N=4). We 
then learn statistics for each type of process using M = {4, 5,15,20, 25}. This tests for 
situations in which the depth is both under-specified and over-specified (as well as perfectly 
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Figure 5: Comparison of Wiener filter (top) non parametric approach (bottom) for synthesis . 
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Figure 6: Informative Statistics for noisy random telegraph waves. M = 25 trained on N 
equal 4 (left) and 20 (right). 

specified). We will denote FN({Xk}M) as the statistic which was trained on an RTW(N) 
process with a memory depth of M. 

Since we implicitly learn a joint density over (Xk, FN( {Xk} M)) synthesis is possible by 
sampling from that density. Figure 5 compares synthesis using the described method (bot­
tom) to a Wiener filter (top) estimated over the same data. The results using the information 
theoretic approach (bottom) preserve the structure of the RTW while the Wiener filter re­
sults do not. This was achieved by collapsing the information of past samples into a single 
statistic (avoiding high dimension density estimation). Figure 6 shows the joint density 
over (Xk, F N ( {Xk} M )) for N = {4, 20} and M = 25. We see that the estimated den­
sities are not separable and by virtue of this fact the learned statistic conveys information 
about the future. Figure 7 shows results from 100 monte carlo trials. In this case the depth 
of the statistic is matched to the process. Each plot shows the accumulated conditional log 
likelihood (L(f.k) = i E:=1 10gp(XiIFN( {Xk-l} M)) under the learned statistic with error 
bars. Figure 8 shows similar results after varying the memory depth M = {4, 5,15,20, 25} 
of the statistic. The figures illustrate robustness to choice of memory depth M. This is not 
to say that memory depth doesn't matter; that is, there must be some information to exploit, 
but the empirical results indicate that useful information was extracted. 

6 Conclusions 

We have described a nonpararnetric approach for finding informative statistics. The ap­
proach is novel in that learning is derived from nonpararnetric estimators of entropy and 
mutual information. This allows for a means by which to 1) efficiently summarize the 
past, 2) predict the future and 3) characterize the uncertainty of those predictions beyond 
second-order statistics. Futhermore, this was accomplished without the strong assumptions 
accompanying parametric approaches. 
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Figure 7: Conditional L(€k). Solid line indicates RTW(N=20) while dashed line indicates 
RTW(N=4). Thick lines indicate the average over all monte carlo runs while the thin lines 
indicate ±1 standard deviation. The left plot uses a statistic trained on RTW(N=20) while 
the right plot uses a statistic trained on RTW(N=4). 
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Figure 8: Repeat of figure 7 for cases with M = {4, 5, 15,20, 25}. Obvious breaks indicate 
a new set of trials 

We also presented empirical results which illustrated the utility of our approach. The exam­
ple of random walk served as a simple illustration in learning a dynamic system in spite of 
the over-specification of the AR model. More importantly, we demonstrated the ability to 
learn both the dynamic and the statistics of the underlying noise process. This information 
was later used to distinguish realizations by their non parametric densities, something not 
possible using MMSE error prediction. 

An even more compelling result were the experiments with noisy random telegraph waves. 
We demonstrated the algorithms ability to learn a compact statistic which efficiently sum­
marized the past for process identification. The method exhibited robustness to the number 
of parameters of the learned statistic. For example, despite overspecifying the dependence 
of the memory-4 in three of the cases, a useful statistic was still found. Conversely, despite 
the memory-20 statistic being underspecified in three of the experiments, useful informa­
tion from the available past was extracted. 

It is our opinion that this method provides an alternative to some of the traditional and 
connectionist approaches to time-series analysis. The use of nonparametric estimators adds 
flexibility to the class of densities which can be modeled and places less of a constraint on 
the exact form of the summarizing statistic. 
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