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Abstract 

A figure-ground segregation network is proposed based on a novel 
boundary pair representation. Nodes in the network are bound­
ary segments obtained through local grouping. Each node is ex­
citatorily coupled with the neighboring nodes that belong to the 
same region, and inhibitorily coupled with the corresponding paired 
node. Gestalt grouping rules are incorporated by modulating con­
nections. The status of a node represents its probability being 
figural and is updated according to a differential equation. The 
system solves the figure-ground segregation problem through tem­
poral evolution. Different perceptual phenomena, such as modal 
and amodal completion, virtual contours, grouping and shape de­
composition are then explained through local diffusion. The system 
eliminates combinatorial optimization and accounts for many psy­
chophysical results with a fixed set of parameters. 

1 Introduction 

Perceptual organization refers to the ability of grouping similar features in sensory 
data. This, at a minimum, includes the operations of grouping and figure-ground 
segregation, which refers to the process of determining relative depths of adjacent 
regions in input data and thus proper occlusion hierarchy. Perceptual organization 
has been studied extensively and many of the existing approaches [5] [4] [8] [10] [3] 
start from detecting discontinuities, i.e. edges in the input; one or several configura­
tions are then selected according to certain criteria, for example, non-accidental ness 
[5] . Those approaches have several disadvantages for perceptual organization. Edges 
should be localized between regions and an additional ambiguity, the ownership of 
a boundary segment, is introduced, which is equivalent to figure-ground segrega­
tion [7]. Due to that, regional attributions cannot be associated with boundary 
segments. Furthermore, because each boundary segment can belong to different 
regions, the potential search space is combinatorial. 

To overcome some of the problems, we propose a laterally-coupled network based on 
a boundary-pair representation to resolve figure-ground segregation. An occluding 
boundary is represented by a pair of boundaries of the two associated regions, and 
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Figure 1: On- and off-center cell responses. (a) On- and off-center cells. (b) Input 
image. (c) On-center cell responses. (d) Off-center cell responses (e) Binarized 
on- and off-center cell responses, where white regions represent on-center response 
regions and black off-center regions. 

initiates a competition between the regions. Each node in the network represents a 
boundary segment. Regions compete to be figural through boundary-pair competi­
tion and figure-ground segregation is resolved through temporal evolution. Gestalt 
grouping rules are incorporated by modulating coupling strengths between different 
nodes within a region , which influences the temporal dynamics and determines the 
percept of the system. Shape decomposition and grouping are then implemented 
through local diffusion using the results from figur e-ground segregation. 

2 Figure-Ground Segregation Network 

The central problem in perceptual organization is to determine relative depths 
among regions. As figure reversal occurs in certain circumstances, figure-ground 
segregation cannot be resolved only based on local attributes. 

2.1 The Network Architecture 

The boundary-pair representation is motivated by on- and off-center cells, shown 
in Fig. l(a). Fig. l(b) shows an input image and Fig. l(c) and (d) show the 
on- and off-center responses. Without zero-crossing, we naturally obtain double 
responses for each occluding boundary, as shown in Fig. l(e). In our boundary-pair 
representation, each boundary is uniquely associated with a region. 

In this paper, we obtain closed region boundaries from segmentation and form 
boundary segments using corners and junctions, which are detected through local 
corner and junction detectors. A node i in the figure-ground segregation network 
represents a boundary segment, and Pi represents its probability being figural, which 
is set to 0.5 initially. Each node is laterally coupled with neighboring nodes on the 
closed boundary. The connection weight from node i to j, Wij, is 1 and can be 
modified by T-junctions and local shape information. Each occluding boundary is 
represented by a pair of boundary segments of the involved regions . For example, 
in Fig. 2(a), nodes 1 and 5 form a boundary pair , where node 1 belongs to the 
white region and node 5 belongs to the black region. Node i updates its status by: 

dPi " " Bi T dt = ILL ~ Wki(Pk - Pi) + ILJ(l - P i) ~ H(Qli) + ILB(l - Pi) exp( - K ) (1) 
kEN(i) lEJ (i) B 

Here N(i) is the set of neighboring nodes of i, and ILL , ILJ , and ILB are parameters 
to determine the influences from lateral connections , junctions , and bias. J(i) is 
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Figure 2: (a) The figure-ground segregation network for Fig. l(b). Nodes 1, 2, 3 
and 4 belong to the white region; nodes 5, 6, 7, and 8 belong to the black region; 
and nodes 9 and 10, and nodes 11 and 12 belong to the left and right gray regions 
respectively. Solid lines represent excitatory coupling while dashed lines represent 
inhibitory connections. (b) Result after surface completion. Left and right gray 
regions are grouped together. 

the set of junctions that are associated with i and Q/i is the junction strength of 
node i of junction l. H(x) is given by H(x) = tanh(j3(x - OJ )), where j3 controls 
the steepness and OJ is a threshold. 

In (1), the first term on the right reflects the lateral influences. When nodes are 
strongly coupled, they are more likely to be in the same status, either figure or 
background. The second term incorporates junction information. In other words, 
at a T-junction, segments that vary more smoothly are more likely to be figural. The 
third term is a bias, where Bi is the bias introduced to simulate human perception. 
The competition between paired nodes i and j is through normalization based on 
the assumption that only one of the paired nodes should be figural at a given time: 
p(Hl) = pt/(P~ + pt) and p(tH) = P~/(pt + P~) 

t t t J J J t J' 

2.2 Incorporation of Gestalt Rules 

To generate behavior that is consistent with human perception, we incorporate 
grouping cues and some Gestalt grouping principles. As the network provides a 
generic model, additional grouping rules can also be incorporated. 

T-junctions T-junctions provide important cues for determining relative depths 
[7] [10]. In Williams and Hanson's model [10], T-junctions are imposed as 
topological constraints. Given aT-junction l, the initial strength for node i that is 
associated with lis: 

Q exp( -Ci(i,C(i»/ KT) 

Ii = 1/2 LkENJ(I) exp( -Ci(k ,c(k»)/ K T ) , 

where K T is a parameter, N J (l) is a set of all the nodes associated with junction l, 
c( i) is the other node in N J (l) that belongs to the same region as node i, and Ci(ij) 

is the angle between segments i and j. 

Non-accidentalness Non-accidentalness tries to capture the intrinsic relation­
ships among segments [5]. In our system, an additional connection is introduced to 
node i if it is aligned well with a node j from the same region and j rf. N(i) initially. 
The connection weight Wij is a function of distance and angle between the involved 
ending points. This can be viewed as virtual junctions, resulting in virtual contours 
and conversion of a corner into a T-junction if involved nodes become figural. This 
corresponds to an organization criterion proposed by Geiger et al [3}. 
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Figure 3: Temporal behavior of each node in the network shown in Fig. 2(a). Each 
plot shows the status of the corresponding node with respect to time. The dashed 
line is 0.5. 

Shape information Shape information plays a central role in Gestalt principles 
and is incorporated through enhancing lateral connections. In this paper, we 
consider local symmetry. Let j and k be two neighboring nodes of i: 

Wij = 1 + C exp( -Iaij - akil/ KaJ * exp( -(Lj / Lk + Lk/ Lj - 2)/ K L )), 

where C, KQ:, and KL are parameters and L j is the length of segment j. Essentially 
the lateral connections are strengthened when two neighboring segments of i are 
symmetric. 

Preferences Human perceptual systems often prefer some organizations over oth­
ers. Here we incorporated a well-known figure-ground segregation principle, called 
closeness. In other words, the system prefers filled regions over holes. In current 
implementation, we set Bi == 1.0 if node i is part of a hole and otherwise Bi == o. 

2.3 Temporal Properties of the Network 

After we construct the figure-ground segregation network, each node is updated 
according to (1). Fig. 3 shows the temporal behavior of the network shown in Fig. 
2(a). The system approaches to a stable solution. For figure-ground segregation, we 
can binarize the status of each node using threshold 0.5. Thus the system generates 
the desired percept in a few iterations. The black region occludes other regions 
while gray regions occlude the white region. For example, P5 is close to 1 and thus 
segment 5 is figural, and PI is close to 0 and thus segment 1 is in the background. 

2.4 Surface Completion 

After figure-ground segregation is resolved, surface completion and shape decompo­
sition are implemented through diffusion [3]. Each boundary segment is associated 
with regional attributes such as the average intensity value because its ownership 
is known. Boundary segments are then grouped into diffusion groups based on sim­
ilarities of their regional attributes and if they are occluded by common regions. 
In Fig. 1(b), three diffusion groups are formed, namely, the black region, two gray 
regions, and the white region. Segments in one diffusion group are diffused simulta­
neously. For a figural segment, a buffer with a given radius is generated. Within the 
buffer, the values are fixed to 1 for pixels belonging to the region and 0 otherwise. 
Now the problem becomes a well-defined mathematical problem. We need to solve 
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Figure 4: Images with virtual contours. In each column, the top shows the input 
image and the bottom the surface completion result, where completed surfaces are 
shown according to their relative depths and the bottom one is the projection of all 
the completed surfaces. (a) Alternate pacman. (b) Reverse-contrast pacman. (c) 
Kanizsa triangle. (d) Woven square. (e) Double pacman. 

the heat equation with given boundary conditions. Currently, the heat equation is 
solved through local diffusion. The results from diffusion are then binarized using 
threshold 0.5. Fig. 2(b) shows the results for Fig. l(b) after surface completion. 
Here the two gray regions are grouped together through surface completion because 
occluded boundaries allow diffusion. The white region becomes the background, 
which is the entire image. 

3 Experimental Results 

Given an image, the system automatically constructs the network and establishes 
the connections based on the rules discussed in Section 2.2. For all the experiments 
shown here, a fixed set of parameters is used. 

3.1 Modal and Amodal Completion 

We first demonstrate that the system can simulate virtual contours and modal 
completion. Fig. 4 shows the input images and surface completion results. The 
system correctly solves figure-ground segregation problem and generates the most 
probable percept. Fig. 4 (a) and (b) show two variations of pacman images [9] 
[4]. Even though the edges have opposite contrast, the virtual rectangle is vivid. 
Through boundary-pair representation, our system can handle both cases using the 
same network. Fig. 4(c) shows a typical virtual image [6] and the system correctly 
simulates the percept. In Fig. 4( d) [6], the rectangular-like frame is tilted, making 
the order between the frame and virtual square not well-defined. Our system handles 
that in the temporal domain. At any given time, the system outputs one of the 
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Figure 5: Surface completion results. (a) and (b) Bregman figures [1]. (c) and (d) 
Surface completion results for (a) and (b). (e) and (f) An image of some groceries 
and surface completion result. 

completed surfaces. Due to this, the system can also handle the case in Fig. 4(e) 
[2], where the percept is bistable, as the order between the two virtual squares is 
not well defined. 

Fig. 5(a) and (b) show the well-known Bregman figures [1]. In Fig. 5(a), there is no 
perceptual grouping and parts of B's remain fragmented. However, when occlusion 
is introduced as in Fig. 5(b), perceptual grouping is evident and fragments of B's 
are grouped together. Our results, shown in Fig. 5 (c) and (d), are consistent with 
the percepts. Fig. 5(e) shows an image of groceries, which is used extensively in [8]. 
Even though the T-junction at the bottom is locally confusing, our system gives the 
most plausible result through lateral influences of the other two strong T-junctions. 
Without search and parameter tuning, our system gives the optimal solution shown 
in Fig. 5(f). 

3.2 Comparison with Existing Approaches 

As mentioned earlier, at the minimum, figure-groud segregation and grouping need 
to be addresssed for perceptual organization. Edge-based approaches [4] [10] at­
tempt to solve both problems simultaneously by prefering some configurations over 
combinatorially many ones according to certain creteria. There are several diffi­
culties common to those approaches. First it cannot account for different human 
percepts of cases where edge elements are similar. Fig. 5 (a) and (b) are well­
known examples in this regard. Another example is that the edge-only version of 
Fig. 4( c) does not give rise to a vivid virtual contour as in Fig. 4( c) [6]. To reduce 
the potential search space, often contrast signs of edges are used as additional con­
traints [10J. However, both Fig. 4 (a) and (b) give rise to virtual contours despite 
the opposite edge contrast signs. Essentially based on Fig. 4(b), Grossberg and 
Mingolla [4] claimed that illusory contours can join edges with different directions 
of contrast , which does not hold in general. As demonstrated through experiments, 
our approach does offer a common principle underlying these examples. 

Our approach shares some similarities with the one by Geiger et al [3]. In both 
approaches , perceptual organization is solved in two steps. In [3], figure-ground 
segregation is encoded implicitly in hypotheses which are defined at junction points. 
Because potential hypotheses are combinatorial, only a few manually chosen ones 
are tested in their experiments , which is not sufficient for a general computational 
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model. In our approach, by resolving figure-ground segregation, there is no need to 
define hypotheses explicitly. In both methods, grouping is implemented through 
diffusion. In [3], "heat" sources for diffusion are given manually for each hy­
pothesis whereas our approach generates "heat" sources automatically using the 
figure-ground segregation results. Finally, in our approach, local ambiguities can 
be resolved through lateral connections using temporal dynamics, resulting in ro­
bust behavior. To obtain good results for Fig. 5(e), Nitzberg et al [8] need to 
tune parameters and increase their search space substantially due to the misleading 
T-junction at the bottom of Fig. 5(e). 

4 Conclusion 

In this paper we have proposed a network for perceptual organization using tem­
poral dynamics. The pair-wise boundary representation resolves the ownership 
ambiguity inherent in an edge-based representation and is equivalent to a surface 
representation through diffusion, providing a unified edge- and surface-based rep­
resentation. Through temporal dynamics, our model allows for interactions among 
different modules and top-down influences can be incorporated. 
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