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We develop a hierarchical generative model to study cue combi­
nation. The model maps a global shape parameter to local cue­
specific parameters, which in tum generate an intensity image. 
Inferring shape from images is achieved by inverting this model. 
Inference produces a probability distribution at each level; using 
distributions rather than a single value of underlying variables at 
each stage preserves information about the validity of each local 
cue for the given image. This allows the model, unlike standard 
combination models, to adaptively weight each cue based on gen­
eral cue reliability and specific image context. We describe the 
results of a cue combination psychophysics experiment we con­
ducted that allows a direct comparison with the model. The model 
provides a good fit to our data and a natural account for some in­
teresting aspects of cue combination. 

Understanding cue combination is a fundamental step in developing computa­
tional models of visual perception, because many aspects of perception naturally 
involve multiple cues, such as binocular stereo, motion, texture, and shading. It is 
often formulated as a problem of inferring or estimating some relevant parameter, 
e.g., depth, shape, position, by combining estimates from individual cues. 

An important finding of psychophysical studies of cue combination is that cues 
vary in the degree to which they are used in different visual environments. Weights 
assigned to estimates derived from a particular cue seem to reflect its estimated 
reliability in the current scene and viewing conditions. For example, motion 
and stereo are weighted approximately equally at near distances, but motion is 
weighted more at far distances, presumably due to distance limits on binocular 
disparity.3 Experiments have also found these weightings sensitive to image ma­
nipulations; if a cue is weakened, such as by adding noise, then the uncontami­
nated cue is utilized more in making depth judgments.9 A recent study2 has shown 
that observers can adjust the weighting they assign to a cue based on its relative 
utility for a particular task. From these and other experiments, we can identify two 
types of information that determine relative cue weightings: (1) cue reliability: its 
relative utility in the context of the task and general viewing conditions; and (2) 
region informativeness: cue information available locally in a given image. 

A central question in computational models of cue combination then concerns how 
these forms of uncertainty can be combined. We propose a hierarchical generative 
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model. Generative models have a rich history in cue combination, as thel underlie 
models of Bayesian perception that have been developed in this area. lO , The nov­
elty in the generative model proposed here lies in its hierarchical nature and use 
of distributions throughout, which allows for both context-dependent and image­
specific uncertainty to be combined in a principled manner. 

Our aims in this paper are dual: to develop a combination model that incorporates 
cue reliability and region informativeness (estimated across and within images), 
and to use this model to account for data and provide predictions for psychophys­
ical experiments. Another motivation for the approach here stems from our recent 
probabilistic framework,11 which posits that every step of processing entails the 
representation of an entire probability distribution, rather than just a single value 
of the relevant underlying variable(s). Here we use separate local probability dis­
tributions for each cue estimated directly from an image. Combination then entails 
transforming representations and integrating distributions across both space and 
cues, taking across- and within-image uncertainty into account. 

1 IMAGE GENERATION 

In this paper we study the case of combining shading and texture. Standard shape­
from-shading models exclude texture, l, 8 while standard shape-from-texture mod­
els exclude shading.7 Experimental results and computational arguments have 
supported a strong interaction between these cues}O but no model accounting for 
this interaction has yet been worked out. 

The shape used in our experiments is a simple surface: 

Z = B(l - x2), Ixl <= 1, Iyl <= 1 (1) 

where Z is the height from the xy plane. B is the only shape parameter. 

Our image formation model is a hierarchical generative model (see Figure 1). The 
top layer contains the global parameter B. The second layer contains local shad­
ing and texture parameters S, T = {Sj, 11}, where i indexes image regions. The 
generation of local cues from a global parameter is intended to allow local uncer­
tainties to be introduced separately into the cues. This models specific conditions 
in realistic images, such as shading uncertainty due to shadows or specularities, 
and texture uncertainty when prior assumptions such as isotropicity are violated.4 

Here we introduce uncertainty by adding independent local noise to the underly­
ing shape parameter; this manipulation is less realistic but easier to control. 

Global Shape (B) 

/~ 
Local Shading ({S}) Local Texture ({T}) 

~~ 
Image (I) 

Figure 1: Left: The generative model of image formation. Right: Two sample 
images generated by the image formation procedure. B = 1.4 in both. Left: 0', = 
0.05,O't = O. Right: 0', = O,O't = 0.05. 

The local cues are sampled from Gaussian distributions: p(SdB) = N(f(B); 0',); 
p(7iIB) = N(g(B); O't}. f(B),g(B) describe how the local cue parameters depend 
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on the shape parameter B, while 0"8 and O"t represent the degree of noise in each 
cue. In this paper, to simplify the generation process we set f(B) = g(B) = B. 
From {Si} and {Ti}, two surfaces are generated; these are essentially two separate 
noisy local versions of B. The intensity image combines these surfaces. A set 
of same-intensity texsels sampled from a uniform distribution are mapped onto 
the texture surface, and then projected onto the image plane under orthogonal 
projection. The intensity of surface pixels not contained within these texsels are 
determined generated from the shading surface using Lambertian shading. Each 
image is composed of 10 x 10 non-overlapping regions, and contains 400 x 400 
pixels. Figure 1 shows two images generated by this procedure. 

2 COMBINATION MODEL 

We create a combination, or recognition model by inverting the generative model 
of Figure 1 to infer the shape parameter B from the image. An important aspect of 
the combination model is the use of distributions to represent parameter estimates 
at each stage. This preserves uncertainty information at each level, and allows it to 
playa role in subsequent inference. 

The overall goal of combination is to infer an estimate of B given some image I. We 
derive our main inference equation using a Bayesian integration over distributions: 

P(BIl) = J P(BIS, T)P(S, TIl)dSdT (2) 

P(S, TIl) '" IT P(Sdl)P(TiII) (3) 

P(BIS, T) ;(B)P(S, TIB)/ J P(B)P(S, TIB)db '" n P(SdB)P(TiIB) (4) 

• 
To simplify the two components we have assumed that the prior over B is uniform, 
and that the S, T are conditionally independent given B, and given the image. This 
third assumption is dubious but is not essential in the model, as discussed below. 
We now consider these two components in tum. 

2.1 Obtaining local cue-specific representations from an image 

One component in the inference equation, P(S, TIl), describes local cue­
dependent information in the particular image I. We first define intermediate 
representations S, T that are dependent on shading and texture cues, respectively. 
The shading representation is the curvature of a horizontal section: S = f(B) = 
2B(1 + 4x2 B2)-3/2. The texture representation is the cosine of the surface slant: 
T = g(B) = (1 + 4x2 B2)-1/2. Note that these S, T variables do not match those 
used in the generative model; ideally we could have used these cue-dependent 
variables, but generating images from them proved difficult. 

Some image pre-processing must take place in order to estimate values and un­
certainties for these particular local variables. The approach we adopt involves a 
simple statistical matching procedure, similar to k-nearest neighbors, applied to 
local image patches. After applying Gaussian smoothing and band-pass filtering 
to the image, two representations of each patch are obtained using separate shad­
ing and texture filters. For shading, image patches are represented by forming a 
histogram of ~1; for texture, the patch is represented by the mean and standard 
deviation of the amplitude of Gabor filter responses at 4 scales and orientations. 
This representation of a shading patch is then compared to a database of similar 



872 Z. Yang and R. S. Zemel 

patch representations. Entries in the shading database are formed by first select­
ing a particular value of B and (j3' generating an image patch, and applying the 
appropriate filters. Thus S = f (B) and the noise level (j 3 are known for each entry, 
allowing an estimate of these variables for the new patch to be formed as a linear 
combination of the entries with similar representations. An analogous procedure, 
utilizing a separate database, allows T and an uncertainty estimate to be derived 
for texture. Both databases have 60 different h, (j pairs, and 10 samples of each pair. 

Based on this procedure we obtain for each image patch mean values Mt, Ml and 
uncertainty values Vi3 , Vit for Si, Tt. These determine P(IIS), P(IIT), which are 
approximated as Gaussians. Taking into account the Gaussian priors for Si, Tt, 

P(Sil!) 

P(TtI!) 

V,3 V,3 
P(IISi)P(Si) '" exp(-t(S - Mt)2)exp(-t(S - M~)2) (5) 

W v,t 
P(IITt)P(Tt) '" exp( -f(T - Ml)2) exp( -f(T - M~)2) (6) 

Note that the independence assumption of Equation 3 is not necessary, as the 
matching procedure could use a single database indexed by both the shading and 
texture representations of a patch. 

2.2 Transforming and combining cue-specific local representations 

The other component of the inference equation describes the relationship between 
the intermediate, cue-specific representations S, T and the shape parameter B: 

V;3 v;t 
P(SIB) '" exp(--t(S - f(B))2) ; P(TIB) '" exp(-t(T - g(B))2) (7) 

The two parameters Vb3, V: in this equation describe the uncertainty in the relation­
ship between the intermediate parameters S, T and B; they are invariant across 
space. These two, along with the parameters of the priors-M~, M~, V~, Vt-are 
the free parameters of this model. Note that this combination model neatly ac­
counts for both types of cue validity we identified: the variance in P(SIB) de­
scribes the general uncertainty of a given cue, while the local variance in P(SI!) 
describes the image-specific uncertainty of the cue. 

Combining Equations 3-7, and completing the integral in Equation 2, we have: 

P( BII) - exp [ -~ ~ .tI( B)' + .,g(B)' - 2.,f(B) - 2 •• g( B) 1 (8) 

Thus our model infers from any image a mean U and variance E2 for B as non­
linear combinations of the cue estimates, taking into account the various forms of 
uncertainty. 

3 A CUE COMBINATION PSYCHOPHYSICS EXPERIMENT 

We have conducted psychophysical experiments using stimuli generated by the 
procedure described above. In each experimental trial, a stimulus image and four 
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views of a mesh surface are displayed side-by-side on a computer screen. The 
subject's task is to manipulate the curvature of the mesh to match the stimulus. 
The final shape of the mesh surface describes the subject's estimate of the shape 
parameter B on that trial. The subject's variance is computed across repeated trials 
with an identical stimulus. In a given block of trials, the stimulus may contain 
only shading information (no texture elements), only texture information uniform 
shading), or both. The local cue noise «(i$' (it) is zero in some blocks, non-zero in 
others. The primary experimental findings (see Figure 2) are: 

• Shape from shading alone produces underestimates of B. Shape from tex­
ture alone also leads to underestimation, but to a lesser degree. 

• Shape from both cues leads to almost perfect estimation, with smaller vari­
ance than shape from either cue alone. Thus cue enhancement-more accu­
rate and robust judgements for stimuli containing multiple cues than just 
individual cues-applies to this paradigm. 

• The variance of a subject's estimation increases with B. 

• Noise in either shading or texture systematically biases the estimation 
from the true values: the greater the noise level, the greater the bias. 

• Shape from both cues is more robust against noise than shape from either 
cue alone, providing evidence of another form of cue enhancement. 
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Figure 2: Means and standard errors are shown for the shape matching exper­
iment, for different values of B, under different stimulus conditions. rop: No 
noise in local shape parameters. Left: Shape from shading alone. Middle: Shape 
from texture alone. Right: Shape from shading and texture. BOTIOM: Shape from 
shading and texture. Left: (i$ = 0.05, (it = O. Right: (i$ = a, (it = 0.05. 

4 MODELING RESULTS 

The model was ~rained using a subset of data from these experiments. The error 
criteria was mean relative error (M RE) between the model outputs (U, E) and 



874 Z. Yang and R. S. Zemel 

B O"s O"t data (U/E) model (U /E) 
1.4 0.10 0 1.18/0.072 1.20/0.06 
1.6 0.10 0 1.34/0.075 1.35/0.063 
1.4 0.05 0 1.32/0.042 1.4/0.067 
1.6 0.05 0 1.52/0.049 1.46/0.069 
1.2 0 0.05 1.20/0.052 1.14/0.056 
1.4 0 0.05 1.36/0.062 1.30/0.063 

Table 1: Data versus model predictions on images outside the training class. The 
first column of means and variances are from the experimental data, the second 
column from the model. 

experimental data (subject mean and variance on the same image). The six free 
parameters of the model were described as the sum of third order polynomials of 
local S, T and the noise levels. Gradient descent was used to train the model. 

The model was trained and tested on three different subsets of the experimental 
data. When trained on data in which only B varied, the model output accurately 
predicts unseen experimental data of the same type. When the data varied in B 
and O"s or O"t, the model outputs agree very well with subject data (M RE ,...., 5 -
8%). When trained on data where all three variables vary, the model fits the data 
reasonably well (M RE ,...., 8 -13%). For a model of the first type, Figure 3 compares 
model predictions to data from within the same set, while Table 1 shows model 
outputs and subject responses for test examples from outside the training class. 
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Figure 3: Model performance on data in which O"s = O,O"t = 0.10. Upper line: 
perfect estimation. Lower line: experimental data. Dashed line: model prediction. 

The model accounts for some important aspects of cue combination. Trained 
model parameters reveal that the texture prior is considerably weaker than the 
shading prior, and texture has a more reliable relationship with B. Consequently, 
at equal noise levels texture outweighs shading in the combination model. These 
factors account for the degree of underestimation found in each single-cue experi­
ment, and the greater accuracy (i.e., enhancement) with combined-cues. Our stud­
ies also reveal a novel form of cue interaction: for some image patches, esp. at 
high curvature and noise levels, shading information becomes hannful, i.e., cur­
vature estimation becomes less reliable when shading information is taken into 
account. Note that this differs from cue veto, in that texture does not veto shading. 

Finally, the primary contribution of our model lies in its ability to predict the effect 
of continuous within-image variation in cue reliability on combination. Figure 4 
shows how the estimation becomes more accurate and less variable with increas-
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ing certainty in shading infonnation. Standard cue combination models cannot 
produce similar behavior, as they do not estimate within-image cue reliabilities. 
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Figure 4: Mean (left) and variance (right) of model output as a function of "is, for 
different values of B. Here Us = 0.15, Ut = 0, all model parameters held constant. 

5 CONCLUSION 

We have proposed a hierarchical generative model to study cue combination. In­
ferring parameters from images is achieved by inverting this modeL Inference pro­
duces probability distributions at each level: a set of local distributions, separately 
representing each cue, are combined to fonn a distribution over a relevant scene 
variable. The model naturally handles variations in cue reliability, which depend 
both on spatially local image context and general cue characteristics. This fonn of 
representation, incorporating image-specific cue utilities, makes this model more 
powerful than standard combination models. The model provides a good fit to 
our psychophysics results on shading and texture combination and an account for 
several aspects of cue combination; it also provides predictions for hGW varying 
noise levels, both within and across images, will effect combination. 

We are extending this work in a number of directions. We are conducting exper­
iments to obtain local shape estimates from subjects. We are conSidering better 
ways to extract local representations and distributions over them directly from an 
image, and methods of handling natural outliers such as shadows and occlusion. 
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