
Better Generative Models for Sequential
Data Problems: Bidirectional Recurrent

Mixture Density Networks

Mike Schuster
ATR Interpreting Telecommunications Research Laboratories
2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, JAPAN

gustl@itl.atr.co.jp

Abstract

This paper describes bidirectional recurrent mixture density net­
works, which can model multi-modal distributions of the type
P(Xt Iyf) and P(Xt lXI, X2 , ... ,Xt-l, yf) without any explicit as­
sumptions about the use of context . These expressions occur fre­
quently in pattern recognition problems with sequential data, for
example in speech recognition. Experiments show that the pro­
posed generative models give a higher likelihood on test data com­
pared to a traditional modeling approach, indicating that they can
summarize the statistical properties of the data better.

1 Introduction

Many problems of engineering interest can be formulated as sequential data prob­
lems in an abstract sense as supervised learning from sequential data, where an
input vector (dimensionality D) sequence X = xf = {X!,X2, .. . ,XT_!,XT} liv­
ing in space X has to be mapped to an output vector (dimensionality J<) target
sequence T = tf = {tl' t 2, ... , tT -1 , tT} in space1 y, that often embodies cor­
relations between neighboring vectors Xt, Xt+l and tt, tt+l. In general there are
a number of training data sequence pairs (input and target), which are used to
estimate the parameters of a given model structure, whose performance can then
be evaluated on another set of test data pairs . For many applications the problem
becomes to predict the best sequence Y* given an arbitrary input sequence X, with
, best' meaning the sequence that minimizes an error using a suitable metric that is
yet to be defined . Making use of the theory of pattern recognition [2] this problem
is often simplified by treating any sequence as one pattern. This makes it possi­
ble to express the objective of sequence prediction with the well known expression
y* = arg maxy P(YIX), with X being the input sequence, Y being any valid out­
put sequence and y* being the predicted sequence with the highest probability2

1 a sample sequence of the training target data is denoted as T, while an output sequence
in general is denoted as Y, both live in the output space Y

2to simplify notation, random variables and their values, are not denoted as different
symbols. This means, P(x) = P(X = x).

590 M Schuster

among all possible sequences.

Training of a sequence prediction system corresponds to estimating the distribution
3 P(YIX) from a number of samples which includes (a) defining an appropriate
model representing this distribution and (b) estimating its parameters such that
P(YIX) for the training data is maximized. In practice the' model consists of
several modules with each of them being responsible for a different part of P(YIX) .

Testing (usage) of the trained system or recognition for a given input sequence
X corresponds principally to the evaluation of P(YIX) for all possible output se­
quences to find the best one Y*. This procedure is called the search and its efficient
implementation is important for many applications .

In order to build a model to predict sequences it is necessary to decompose the
sequences such that modules responsible for smaller parts can be build. An often
used approach is the decomposition into a generative and prior model part, using
P(BIA) = P(AIB)P(B)/ P(A) and P(A, B) = P(A)P(BIA), as:

Y* arg maxP(YIX) = arg maxP(XIY)P(Y)
y y

T T

arg max [II P(XtI Xl,X2, . .. ,Xt-l,yn] [II P(YtIYI,Y2, ... ,Yt-d](1)
Y t=l t=l

, '" ~, v.------'
generative part prior part

For many applications (1) is approximated by simpler expressions, for example as
a first order Markov Model

T T

Y* ~ arg max [II P(xtIYd] [II P(Yt!Yt-l)]
Y t=l t=l

(2)

making some simplifying approximations. These are for this example:

• Every output Yt depends only on the previous output Yt-l and not on all
previous outputs:

P(YtIYI,Y2,'" ,Yt-d => P(YtIYt-d (3)
• The inputs are assumed to be statistically independent in time:

P(XtIXI, X2, .. ·, Xt-l. yf) => P(Xt Iyn (4)
• The likelihood of an input vector Xt given the complete output sequence y[

is assumed to depend only on the output found at t and not on any other
ones:

(5)

Assuming that the output sequences are categorical sequences (consisting of sym­
bols), approximation (2) and derived expressions are the basis for many applications.
For example, using Gaussian mixture distributions to model P(Xtlye) = Pk(X) V Ii
occuring symbols, approach (2) is used in a more sophisticated form in most state­
of-the-art speech recognition systems.

Focus of this paper is to present some models for the generative part of (1) which
need less assumptions. Ideally this means to be able to model directly expressions
of the form P(XtIX},X2, ... ,Xt-l,yn, the possibly (multi-modal) distribution of a
vector conditioned on previous x vectors Xt, Xt-l, ... , Xl and a complete sequence
yi, as shown in the next section.

3 t here is no distinction made between probability mass and density, usually denoted
as P and p, respectively. If the quantity to model is categorical, a probability mass is
assumed, if it is continuous, a probability density is assumed.

Bidirectional Recurrent Mixture Density Networks 591

2 Mixture density recurrent neural networks

Assume we want to model a continuous vector sequence, conditioned on a sequence
of categorical variables as shown in Figure 1. One approach is to assume that
the vector sequence can be modeled by a uni-modal Gaussian distribution with
a constant variance, making it a uni-modal regression problem. There are many
practical examples where this assumption doesn ' t hold, requiring a more complex
output distribution to model multi-modal data. One example is the attempt to
model the sounds of phonemes based on data from multiple speakers. A certain
phoneme will sound completely different depending on its phonetic environment or
on the speaker, and using a single Gaussian with a constant variance would lead to
a crude averaging of all examples .

The traditional approach is to build generative models for each symbol separately, as
suggested by (2) . If conventional Gaussian mixtures are used to model the observed
input vectors , then the parameters of the distribution (means, covariances , mixture
weights) in general do not change with the temporal position of the vector to model
within a given state segment of that symbol. This can be a bad representation
for the data in some areas (shown are here the means of a very bi-modal looking
distribution) , as indicated by the two shown variances for the state 'E' . When used
to model speech, a procedure often used to cope with this problem is to increase
the number of symbols by grouping often appearing symbol sub-strings into a new
symbol and by subdividing each original symbol into a number of states.

L-________________________ ~~TINffi

KKKEEEEEEEEEEmmrrmKKKOOOOOOOOOo KKKEEEEEEEEEEIUUIumKKKOOOOOooooo

Figure 1: Conventional Gaussian mixtures (left) and mixture density BRNNs (right)
for multi-modal regression

Another alternative is explored here , where all parameters of a Gaussian mixture dis­
tribution modeling the continuous targets are predicted by one bidirectional recur­
rent neural network , extended to model mixture densities conditioned on a complete
vector sequence , as shown on the right side of Figure 1. Another extension (sec­
tion 2.1) to the architecture allows the estimation of time varying mixture densities
conditioned on a hypothesized output sequence and a continuous vector sequence
to model exactly the generative term in (1) without any explicit approximations
about the use of context .

Basics of non-recurrent mixture density networks (MLP type) can be found in [1][2] .
The extension from uni-modal to multi-modal regression is somewhat involved but
straightforward for the two interesting cases of having a radial covariance matrix or a
diagonal covariance matrix per mixture component. They are trained with gradient­
descent procedures as regular uni-modal regression NNs. Suitable equations to
calculate the error that is back-propagated can be found in [6] for the two cases
mentioned, a derivation for the simple case in [1][2].

Conventional recurrent neural networks (RNNs) can model expressions of the form
P(Xt iYl , Y2 , ... , Yt), the distribution of a vector given an input vector plus its past
input vectors. Bidirectional recurrent neural networks (BRNNs) [5][6] are a simple

592 M. Schuster

extension of conventional RNNs. The extension allows one to model expressions of
the form P(xtlyi), the distribution of a vector given an input vector plus its past
and following input vectors.

2.1 Mixture density extension for BRNN s

Here two types of extensions of BRNNs to mixture density networks are considered:

I) An extension to model expressions of the type P(Xt Iyi), a multi-modal
distribution of a continuous vector conditioned on a vector sequence y[,
here labeled as mixture density BRNN of Type 1.

II) An extension to model expressions of the type P(XtlXt,X2,'" ,Xt-l,yf),
a probability distribution of a continuous vector conditioned on a vector
sequence y[and on its previous context in time Xl,X2, ... ,Xt-l. This
architecture is labeled as mixture density BRNN of Type II.

The first extension of conventional uni-modal regression BRNNs to mixture density
networks is not particularly difficult compared to the non-recurrent implementation,
because the changes to model multi-modal distributions are completely independent
of the structural changes that have to be made to form a BRNN.

The second extension involves a structural change to the basic BRNN structure
to incorporate the Xl, X2, ... ,Xt-l as additional inputs, as shown in Figure 2. For
any t the neighboring Xt-l. Xt-2, ... are incorporated by adding an additional set
of weights to feed the hidden forward states with the extended inputs (the tar­
gets for the outputs) from the time step before. This includes Xt-l directly and
Xt-2, Xt-3, ... Xl indirectly through the hidden forward neurons. This architecture
allows one to estimate the generative term in (1) without making the explicit as­
sumptions (4) and (5), since all the information Xt is conditioned on, is theoretically
available .

1-1 1+1

Figure 2: BRNN mixture density extension (Type II) (inputs: striped, outputs:
black, hidden neurons: grey, additional inputs: dark grey). Note that without the
backward states and the additional inputs this structure is a conventional RNN ,
unfolded in time.

Different from non-recurrent mixture density networks, the extended BRNNs can
predict the parameters of a Gaussian mixture distribution conditioned on a vector
sequence rather than a single vector, that is, at each (time) position t one parameter
set (means, variances (actually standard variations), mixture weights) conditioned
on y[for the BRNN of type I and on Xl. X2 , ... ,Xt-l, y[for the BRNN of type II .

Bidirectional Recurrent Mixture Density Networks 593

3 Experiments and Results

The goal of the experiments is to show that the proposed models are more suit­
able to model speech data than traditional approaches , because they rely on fewer
assumptions. The speech data used here has observation vector sequences repre­
senting the original waveform in a compressed form, where each vector is mapped to
exactly one out of f{ phonemes. Here three approaches are compared, which allow
the estimation of the likelihood P(XIY) with various degrees of approximations:

Conventional Gaussian mixture model, P(XIY) ~ 0;=1 P(xtIYt):
According to (2) the likelihood of a phoneme class vector is approximated by a
conventional Gaussian mixture distribution, that is, a separate mixture model is
built to estimate P(xly) = PI;(X) for each of the possible f{ categorical states in
y . In this case the two assumptions (4) and (5) are necessary. For the variance
a radial covariance matrix (diagonal single variance for all vector components) is
chosen to match it to the conditions for the BRNN cases below. The number of
parameters for the complete model is f{ M(D + 2) for M > 1. Several models of
different complexity were trained (Table 1).

Mixture density BRNN I, P(XIY) ~ 0;=1 P(xtiy[): One mixture density
BRNN of type I , with the same number of mixture components and a radial co­
variance matrix for its output distribution as in the approach above , is trained
by presenting complete sample sequences to it. Note that for type I all possible
context-dependencies (assumption (5» are automatically taken care of, because the
probability is conditioned on complete sequences yi . The sequence yi contains for
any t not only the information about neighboring phonemes, but also the position of
a frame within a phoneme. In conventional systems this can only be modeled crudely
by introducing a certain number of states per phoneme . The number of outputs
for the network depends on the number of mixture components and is M(D + 2) .
The total number of parameters can be adjusted by changing the number of hidden
forward and backward state neurons, and was set here to 64 each.

Mixture density BRNN II, P(XIY) = 0;-1 P(xtix l,X2 , ... ,Xt-l , yf):
One mixture density BRNN of type II , again with the same number of mixture
components and a radial covariance matrix, is trained under the same conditions as
above. Note that in this case both assumptions (4) and (5) are taken care of, be­
cause exactly expressions of the required form can be modeled by a mixture density
BRNN of type II.

3.1 Experiments

The recommended training and test data of the TIMIT speech database [3] was
used for the experiments . The TIMIT database comes with hand-aligned phonetic
transcriptions for all utterances , which were transformed to sequences of categorical
class numbers (training = 702438 , test = 256617 vec.). The number of possible
categorical classes is the number of phonemes, f{ = 61. The categorical data
(input data for the BRNNs) is represented as f{-dimensional vectors with the kth
component being one and all others zero . The feature extraction for the waveforms,
which resulted in the vector sequences xi to model , was done as in most speech
recognition systems [7]. The variances were normalized with respect to all training
data, such that a radial variance for each mixture component in the model is a
reasonable choice .

594 M. Schuster

All three model types were trained with M = 1,2,3,4, the conventional Gaussian
mixture model also with M = 8,16 mixture components. The number of resulting
parameters , used as a rough complexity measure for the models , is shown in Table 1.
The states of the triphone models were not clustered.

Table 1: Number of parameters for different types of models

mixture mon061 mon061 tri571 BRNN I BRNN II
components I-state 3-state 3-state

1 1952 5856 54816 20256 22176
2 3904 11712 109632 24384 26304
3 5856 17568 164448 28512 30432
4 7808 23424 219264 32640 34560
8 15616 46848 438528 - -
16 31232 93696 877056 - -

Training for the conventional approach using M mixtures of Gaussians was done
using the EM algorithm. For some classes with only a few samples M had to be
reduced to reach a stationary point of the likelihood. Training of the BRNNs of both
types must be done using a gradient descent algorithm. Here a modified version of
RPROP [4] was used, which is in more detail described in [6] .

The measure used in comparing the tested approaches is the log-likelihood of train­
ing and test data given the models built on the training data. In absence of a search
algorithm to perform recognition this is a valid measure to evaluate the models since
maximizing log-likelihood on the training data is the objective for all model types.
Note that the given alignment of vectors to phoneme classes for the test data is
used in calculating the log-likelihood on the test data - there is no search for the
best alignment.

3.2 Results

Figure 3 shows the average log-likelihoods depending on the number of mixture
components for all tested approaches on training (upper line) and test data (lower
line). The baseline I-state monophones give the lowest likelihood. The 3-state
monophones are slightly better, but have a larger gap between training and test
data likelihood . For comparison on the training data a system with 571 distinct
triphones with 3 states each was trained also. Note that this system has a lot more
parameters than the BRNN systems (see Table 1) it was compared to. The results
for the traditional Gaussian mixture systems show how the models become better
by building more detailed models for different (phonetic) context , i.e., by using more
states and more context classes.

The mixture density BRNN of type I gives a higher likelihood than the traditional
Gaussian mixture models. This was expected because the BRNN type I models
are, in contrast to the traditional Gaussian mixture models , able to include all
possible phonetic context effects by removing assumption (5) - i.e. a frame of a
certain phoneme surrounded by frames of any other phonemes with theoretically no
restriction about the range of the contextual influence .

The mixture density BRNN of type II , which in addition removes the independence
assumption (4), gives a significant higher likelihood than all other models. Note
that the difference in likelihood on training and test data for this model is very
small. indicating a useful model for the underlying distribution of the data.

