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Abstract 

This paper describes bidirectional recurrent mixture density net­
works, which can model multi-modal distributions of the type 
P(Xt Iyf) and P(Xt lXI, X2 , ... ,Xt-l, yf) without any explicit as­
sumptions about the use of context . These expressions occur fre­
quently in pattern recognition problems with sequential data, for 
example in speech recognition. Experiments show that the pro­
posed generative models give a higher likelihood on test data com­
pared to a traditional modeling approach, indicating that they can 
summarize the statistical properties of the data better. 

1 Introduction 

Many problems of engineering interest can be formulated as sequential data prob­
lems in an abstract sense as supervised learning from sequential data, where an 
input vector (dimensionality D) sequence X = xf = {X!,X2, .. . ,XT_!,XT} liv­
ing in space X has to be mapped to an output vector (dimensionality J<) target 
sequence T = tf = {tl' t 2, ... , tT -1 , tT} in space1 y, that often embodies cor­
relations between neighboring vectors Xt, Xt+l and tt, tt+l. In general there are 
a number of training data sequence pairs (input and target), which are used to 
estimate the parameters of a given model structure, whose performance can then 
be evaluated on another set of test data pairs . For many applications the problem 
becomes to predict the best sequence Y* given an arbitrary input sequence X, with 
, best' meaning the sequence that minimizes an error using a suitable metric that is 
yet to be defined . Making use of the theory of pattern recognition [2] this problem 
is often simplified by treating any sequence as one pattern. This makes it possi­
ble to express the objective of sequence prediction with the well known expression 
y* = arg maxy P(YIX), with X being the input sequence, Y being any valid out­
put sequence and y* being the predicted sequence with the highest probability2 

1 a sample sequence of the training target data is denoted as T, while an output sequence 
in general is denoted as Y, both live in the output space Y 

2to simplify notation, random variables and their values, are not denoted as different 
symbols. This means, P(x) = P(X = x). 
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among all possible sequences. 

Training of a sequence prediction system corresponds to estimating the distribution 
3 P(YIX) from a number of samples which includes (a) defining an appropriate 
model representing this distribution and (b) estimating its parameters such that 
P(YIX) for the training data is maximized. In practice the' model consists of 
several modules with each of them being responsible for a different part of P(YIX) . 

Testing (usage) of the trained system or recognition for a given input sequence 
X corresponds principally to the evaluation of P(YIX) for all possible output se­
quences to find the best one Y*. This procedure is called the search and its efficient 
implementation is important for many applications . 

In order to build a model to predict sequences it is necessary to decompose the 
sequences such that modules responsible for smaller parts can be build. An often 
used approach is the decomposition into a generative and prior model part, using 
P(BIA) = P(AIB)P(B)/ P(A) and P(A, B) = P(A)P(BIA), as: 

Y* arg maxP(YIX) = arg maxP(XIY)P(Y) 
y y 

T T 

arg max [II P(XtI Xl,X2, . .. ,Xt-l,yn] [II P(YtIYI,Y2, ... ,Yt-d](1) 
Y t=l t=l 

, '" ~, v.------' 
generative part prior part 

For many applications (1) is approximated by simpler expressions, for example as 
a first order Markov Model 

T T 

Y* ~ arg max [II P(xtIYd] [II P(Yt!Yt-l)] 
Y t=l t=l 

(2) 

making some simplifying approximations. These are for this example: 

• Every output Yt depends only on the previous output Yt-l and not on all 
previous outputs: 

P(YtIYI,Y2,'" ,Yt-d => P(YtIYt-d (3) 
• The inputs are assumed to be statistically independent in time: 

P(XtIXI, X2, .. ·, Xt-l. yf) => P(Xt Iyn (4) 
• The likelihood of an input vector Xt given the complete output sequence y[ 

is assumed to depend only on the output found at t and not on any other 
ones: 

(5) 

Assuming that the output sequences are categorical sequences (consisting of sym­
bols), approximation (2) and derived expressions are the basis for many applications. 
For example, using Gaussian mixture distributions to model P(Xtlye) = Pk(X) V Ii 
occuring symbols, approach (2) is used in a more sophisticated form in most state­
of-the-art speech recognition systems. 

Focus of this paper is to present some models for the generative part of (1) which 
need less assumptions. Ideally this means to be able to model directly expressions 
of the form P(XtIX},X2, ... ,Xt-l,yn, the possibly (multi-modal) distribution of a 
vector conditioned on previous x vectors Xt, Xt-l, ... , Xl and a complete sequence 
yi, as shown in the next section. 

3 t here is no distinction made between probability mass and density, usually denoted 
as P and p, respectively. If the quantity to model is categorical, a probability mass is 
assumed, if it is continuous, a probability density is assumed. 
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2 Mixture density recurrent neural networks 

Assume we want to model a continuous vector sequence, conditioned on a sequence 
of categorical variables as shown in Figure 1. One approach is to assume that 
the vector sequence can be modeled by a uni-modal Gaussian distribution with 
a constant variance, making it a uni-modal regression problem. There are many 
practical examples where this assumption doesn ' t hold, requiring a more complex 
output distribution to model multi-modal data. One example is the attempt to 
model the sounds of phonemes based on data from multiple speakers. A certain 
phoneme will sound completely different depending on its phonetic environment or 
on the speaker, and using a single Gaussian with a constant variance would lead to 
a crude averaging of all examples . 

The traditional approach is to build generative models for each symbol separately, as 
suggested by (2) . If conventional Gaussian mixtures are used to model the observed 
input vectors , then the parameters of the distribution (means, covariances , mixture 
weights) in general do not change with the temporal position of the vector to model 
within a given state segment of that symbol. This can be a bad representation 
for the data in some areas (shown are here the means of a very bi-modal looking 
distribution) , as indicated by the two shown variances for the state 'E' . When used 
to model speech, a procedure often used to cope with this problem is to increase 
the number of symbols by grouping often appearing symbol sub-strings into a new 
symbol and by subdividing each original symbol into a number of states. 

L-________________________ ~~TINffi 

KKKEEEEEEEEEEmmrrmKKKOOOOOOOOOo KKKEEEEEEEEEEIUUIumKKKOOOOOooooo 

Figure 1: Conventional Gaussian mixtures (left) and mixture density BRNNs (right) 
for multi-modal regression 

Another alternative is explored here , where all parameters of a Gaussian mixture dis­
tribution modeling the continuous targets are predicted by one bidirectional recur­
rent neural network , extended to model mixture densities conditioned on a complete 
vector sequence , as shown on the right side of Figure 1. Another extension (sec­
tion 2.1) to the architecture allows the estimation of time varying mixture densities 
conditioned on a hypothesized output sequence and a continuous vector sequence 
to model exactly the generative term in (1) without any explicit approximations 
about the use of context . 

Basics of non-recurrent mixture density networks (MLP type) can be found in [1][2] . 
The extension from uni-modal to multi-modal regression is somewhat involved but 
straightforward for the two interesting cases of having a radial covariance matrix or a 
diagonal covariance matrix per mixture component. They are trained with gradient­
descent procedures as regular uni-modal regression NNs. Suitable equations to 
calculate the error that is back-propagated can be found in [6] for the two cases 
mentioned, a derivation for the simple case in [1][2]. 

Conventional recurrent neural networks (RNNs) can model expressions of the form 
P( Xt iYl , Y2 , ... , Yt), the distribution of a vector given an input vector plus its past 
input vectors. Bidirectional recurrent neural networks (BRNNs) [5][6] are a simple 
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extension of conventional RNNs. The extension allows one to model expressions of 
the form P(xtlyi), the distribution of a vector given an input vector plus its past 
and following input vectors. 

2.1 Mixture density extension for BRNN s 

Here two types of extensions of BRNNs to mixture density networks are considered: 

I) An extension to model expressions of the type P( Xt Iyi), a multi-modal 
distribution of a continuous vector conditioned on a vector sequence y[, 
here labeled as mixture density BRNN of Type 1. 

II) An extension to model expressions of the type P(XtlXt,X2,'" ,Xt-l,yf), 
a probability distribution of a continuous vector conditioned on a vector 
sequence y[ and on its previous context in time Xl,X2, ... ,Xt-l. This 
architecture is labeled as mixture density BRNN of Type II. 

The first extension of conventional uni-modal regression BRNNs to mixture density 
networks is not particularly difficult compared to the non-recurrent implementation, 
because the changes to model multi-modal distributions are completely independent 
of the structural changes that have to be made to form a BRNN. 

The second extension involves a structural change to the basic BRNN structure 
to incorporate the Xl, X2, ... ,Xt-l as additional inputs, as shown in Figure 2. For 
any t the neighboring Xt-l. Xt-2, ... are incorporated by adding an additional set 
of weights to feed the hidden forward states with the extended inputs (the tar­
gets for the outputs) from the time step before. This includes Xt-l directly and 
Xt-2, Xt-3, ... Xl indirectly through the hidden forward neurons. This architecture 
allows one to estimate the generative term in (1) without making the explicit as­
sumptions (4) and (5), since all the information Xt is conditioned on, is theoretically 
available . 

1-1 1+1 

Figure 2: BRNN mixture density extension (Type II) (inputs: striped, outputs: 
black, hidden neurons: grey, additional inputs: dark grey). Note that without the 
backward states and the additional inputs this structure is a conventional RNN , 
unfolded in time. 

Different from non-recurrent mixture density networks, the extended BRNNs can 
predict the parameters of a Gaussian mixture distribution conditioned on a vector 
sequence rather than a single vector, that is, at each (time) position t one parameter 
set (means, variances (actually standard variations), mixture weights) conditioned 
on y[ for the BRNN of type I and on Xl. X2 , ... ,Xt-l, y[ for the BRNN of type II . 
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3 Experiments and Results 

The goal of the experiments is to show that the proposed models are more suit­
able to model speech data than traditional approaches , because they rely on fewer 
assumptions. The speech data used here has observation vector sequences repre­
senting the original waveform in a compressed form, where each vector is mapped to 
exactly one out of f{ phonemes. Here three approaches are compared, which allow 
the estimation of the likelihood P(XIY) with various degrees of approximations: 

Conventional Gaussian mixture model, P(XIY) ~ 0;=1 P(xtIYt): 
According to (2) the likelihood of a phoneme class vector is approximated by a 
conventional Gaussian mixture distribution, that is, a separate mixture model is 
built to estimate P(xly) = PI;(X) for each of the possible f{ categorical states in 
y . In this case the two assumptions (4) and (5) are necessary. For the variance 
a radial covariance matrix (diagonal single variance for all vector components) is 
chosen to match it to the conditions for the BRNN cases below. The number of 
parameters for the complete model is f{ M(D + 2) for M > 1. Several models of 
different complexity were trained (Table 1). 

Mixture density BRNN I, P(XIY) ~ 0;=1 P(xtiy[): One mixture density 
BRNN of type I , with the same number of mixture components and a radial co­
variance matrix for its output distribution as in the approach above , is trained 
by presenting complete sample sequences to it. Note that for type I all possible 
context-dependencies (assumption (5» are automatically taken care of, because the 
probability is conditioned on complete sequences yi . The sequence yi contains for 
any t not only the information about neighboring phonemes, but also the position of 
a frame within a phoneme. In conventional systems this can only be modeled crudely 
by introducing a certain number of states per phoneme . The number of outputs 
for the network depends on the number of mixture components and is M(D + 2) . 
The total number of parameters can be adjusted by changing the number of hidden 
forward and backward state neurons, and was set here to 64 each. 

Mixture density BRNN II, P(XIY) = 0;-1 P(xtix l,X2 , ... ,Xt-l , yf): 
One mixture density BRNN of type II , again with the same number of mixture 
components and a radial covariance matrix, is trained under the same conditions as 
above. Note that in this case both assumptions (4) and (5) are taken care of, be­
cause exactly expressions of the required form can be modeled by a mixture density 
BRNN of type II. 

3.1 Experiments 

The recommended training and test data of the TIMIT speech database [3] was 
used for the experiments . The TIMIT database comes with hand-aligned phonetic 
transcriptions for all utterances , which were transformed to sequences of categorical 
class numbers (training = 702438 , test = 256617 vec.). The number of possible 
categorical classes is the number of phonemes, f{ = 61. The categorical data 
(input data for the BRNNs) is represented as f{-dimensional vectors with the kth 
component being one and all others zero . The feature extraction for the waveforms, 
which resulted in the vector sequences xi to model , was done as in most speech 
recognition systems [7]. The variances were normalized with respect to all training 
data, such that a radial variance for each mixture component in the model is a 
reasonable choice . 
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All three model types were trained with M = 1,2,3,4, the conventional Gaussian 
mixture model also with M = 8,16 mixture components. The number of resulting 
parameters , used as a rough complexity measure for the models , is shown in Table 1. 
The states of the triphone models were not clustered. 

Table 1: Number of parameters for different types of models 

mixture mon061 mon061 tri571 BRNN I BRNN II 
components I-state 3-state 3-state 

1 1952 5856 54816 20256 22176 
2 3904 11712 109632 24384 26304 
3 5856 17568 164448 28512 30432 
4 7808 23424 219264 32640 34560 
8 15616 46848 438528 - -
16 31232 93696 877056 - -

Training for the conventional approach using M mixtures of Gaussians was done 
using the EM algorithm. For some classes with only a few samples M had to be 
reduced to reach a stationary point of the likelihood. Training of the BRNNs of both 
types must be done using a gradient descent algorithm. Here a modified version of 
RPROP [4] was used, which is in more detail described in [6] . 

The measure used in comparing the tested approaches is the log-likelihood of train­
ing and test data given the models built on the training data. In absence of a search 
algorithm to perform recognition this is a valid measure to evaluate the models since 
maximizing log-likelihood on the training data is the objective for all model types. 
Note that the given alignment of vectors to phoneme classes for the test data is 
used in calculating the log-likelihood on the test data - there is no search for the 
best alignment. 

3.2 Results 

Figure 3 shows the average log-likelihoods depending on the number of mixture 
components for all tested approaches on training (upper line) and test data (lower 
line). The baseline I-state monophones give the lowest likelihood. The 3-state 
monophones are slightly better, but have a larger gap between training and test 
data likelihood . For comparison on the training data a system with 571 distinct 
triphones with 3 states each was trained also. Note that this system has a lot more 
parameters than the BRNN systems (see Table 1) it was compared to. The results 
for the traditional Gaussian mixture systems show how the models become better 
by building more detailed models for different (phonetic) context , i.e., by using more 
states and more context classes. 

The mixture density BRNN of type I gives a higher likelihood than the traditional 
Gaussian mixture models. This was expected because the BRNN type I models 
are, in contrast to the traditional Gaussian mixture models , able to include all 
possible phonetic context effects by removing assumption (5) - i.e. a frame of a 
certain phoneme surrounded by frames of any other phonemes with theoretically no 
restriction about the range of the contextual influence . 

The mixture density BRNN of type II , which in addition removes the independence 
assumption (4), gives a significant higher likelihood than all other models. Note 
that the difference in likelihood on training and test data for this model is very 
small. indicating a useful model for the underlying distribution of the data. 


