
Bayesian Network Induction via Local
Neighborhoods

Dimitris Margaritis
Department of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

D.Margaritis@cs.cmu.edu

Sebastian Thrun
Department of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213
S. Thrun@cs.cmu.edu

Abstract

In recent years, Bayesian networks have become highly successful tool for di­
agnosis, analysis, and decision making in real-world domains. We present an
efficient algorithm for learning Bayes networks from data. Our approach con­
structs Bayesian networks by first identifying each node's Markov blankets, then
connecting nodes in a maximally consistent way. In contrast to the majority of
work, which typically uses hill-climbing approaches that may produce dense and
causally incorrect nets, our approach yields much more compact causal networks
by heeding independencies in the data. Compact causal networks facilitate fast in­
ference and are also easier to understand. We prove that under mild assumptions,
our approach requires time polynomial in the size of the data and the number of
nodes. A randomized variant, also presented here, yields comparable results at
much higher speeds.

1 Introduction

A great number of scientific fields today benefit from being able to automatically estimate
the probability of certain quantities of interest that may be difficult or expensive to observe
directly. For example, a doctor may be interested in estimating the probability of heart
disease from indications of high blood pressure and other directly measurable quantities.
A computer vision system may benefit from a probability distribution of buildings based
on indicators of horizontal and vertical straight lines. Probability densities proliferate the
sciences today and advances in its estimation are likely to have a wide impact on many
different fields .
Bayesian networks are a succinct and efficient way to represent a joint probability distri­
bution among a set of variables. As such, they have been applied to fields such as those
mentioned [Herskovits90][Agosta88]. Besides their ability for density estimation, their
semantics lend them to what is sometimes loosely referred to as causal discovery, namely
directional relationships among quantities involved. It has been widely accepted that the
most parsimonious representation for a Bayesian net is one that closely represents the causal
independence relationships that may exist. For these reasons, there has been great interest
in automatically inducing the structure of Bayesian nets automatically from data, preferably
also preserving the independence relationships in the process.
Two research approaches have emerged. The first employs independence properties of
the underlying network that produced the data in order to discover parts of its structure.
This approach is mainly exemplified by the SGS and PC algorithms in [Spirtes93], as well

506 D. Margaritis and S. Thrun

Figure 1: On the left, an example of a Markov blanket of variable X is shown. The members of
the blanket are shown shaded. On the right, an example reconstruction of a 5 x 5 rectangular net of
branching factor 3 by the algorithm presented in this paper using 20000 samples. Indicated by dotted
lines are 3 directionality errors.

as for restricted classes such as trees [Chow68] and poly trees [Rebane87]. The second
approach is concerned more with data prediction, disregarding independencies in the data.
It is typically identified with a greedy hill-climbing or best-first beam search in the space
of legal structures, employing as a scoring function a form of data likelihood, sometimes
penalized for network complexity. The result is a local maximum score network structure
for representing the data, and is one of the more popular techniques used today.
This paper presents an approach that belongs in the first category. It addresses the two main
shortcomings of the prior work which, we believe, are preventing its use from becoming
more widespread. These two disadvantages are: exponential execution times, and proneness
to errors in dependence tests used. The former problem is addressed in this paper in two
ways. One is by identifying the local neighborhood of each variable in the Bayesian net
as a preprocessing step, in order to facilitate the recovery of the local structure around
each variable in polynomial time under the assumption of bounded neighborhood size. The
second, randomized version goes one step further, employing a user-specified number of
randomized tests (constant or logarithmic) in order to ascertain the same result with high
probability. The second disadvantage of this research approach, namely proneness to errors,
is also addressed by the randomized version, by using multiple data sets (if available) and
Bayesian accumulation of evidence.

2 The Grow-Shrink Markov Blanket Algorithm

The concept of the Markov blanket of a variable or a set of variables is central to this paper.
The concept itself is not new. For example, see [PearI88]. It is surprising, however, how
little attention it has attracted for all its being a fundamental property of a Bayesian net.
What is new in this paper is the introduction of the explicit use of this idea to effectively
limit unnecessary computation, as well as a simple algorithm to compute it. The definition
of a Markov blanket is as follows: denoting V as the set of variables and X HS Y as the
conditional dependence of X and Y given the set S, the Markov blanket BL(X) ~ V of
X E V is any set of variables such that for any Y E V - BL(X) - {X}, X ft-BL(x) Y.
In other words, BL(X) completely shields variable X from any other variable in V . The
notion of a minimal Markov blanket, called a Markov boundary, is also introduced in
[PearI88] and its uniqueness shown under certain conditions. The Markov boundary is
not unique in certain pathological situations, such as the equality of two variables. In
our following discussion we will assume that the conditions necessary for its existence and
uniqueness are satisfied and we will identify the Markov blanket with the Markov boundary,
using the notation B (X) for the blanket of variable X from now on. It is also illuminating
to mention that, in the Bayesian net framework, the Markov blanket of a node X is easily
identifiable from the graph: it consists of all parents, children and parents of children of
X. An example Markov blanket is shown in Fig. 1. Note that any of these nodes, say Y, is
dependent with X given B (X) - {Y}.

Bayesian Network Induction via Local Neighborhoods 507

1. S t- 0.

2. While:3 Y E V - {X} such that Y HS X, do S t- S U {Y}. [Growing phase]

3. While:3 YES such that Y ft-S-{Y} X, do S t- S - {Y}. [Shrinking phase]

4. B(X) t- S.

Figure 2: The basic Markov blanket algorithm.

The algorithm for the recovery of the Markov blanket of X is shown in Fig. 2. The idea
behind step 2 is simple: as long as the Markov blanket property of X is violated (ie. there
exists a variable in V that is dependent on X), we add it to the current set S until there are
no more such variables. In this process however, there may be some variables that were
added to S that were really outside the blanket. Such variables would have been rendered
independent from X at a later point when "intervening" nodes of the underlying Bayesian
net were added to S. This observation necessitates step 3, which identifies and removes
those variables. The algorithm is efficient, requiring only O(n) conditional tests, making
its running time O(n IDI), where n = IVI and D is the set of examples. For a detailed
derivation of this bound as well as a formal proof of correctness, see [Margaritis99]. In
practice one may try to minimize the number of tests in step 3 by heuristically ordering the
variables in the loop of step 2, for example by ascending mutual information or probability
of dependence between X and Y (as computed using the X2 test, see section 5).

3 Grow-Shrink (GS) Algorithm for Bayesian Net Induction

The recovery of the local structure around each node is greatly facilitated by the knowledge
of the nodes' Markov blankets. What would normally be a daunting task of employ­
ing dependence tests conditioned on an exponential number of subsets of large sets of
variables-even though most of their members may be irrelevant-can now be focused on
the Markov blankets of the nodes involved, making structure discovery much faster and
more reliable. We present below the plain version of the GS algorithm that utilizes blanket
information for inducing the structure of a Bayesian net. At a later point of this paper, we
will present a robust, randomized version that has the potential of being faster and more
reliable, as well as being able to operate in an "anytime" manner.
In the following N (X) represents the direct neighbors of X.

[Compute Markov Blankets]
For all X E V, compute the Markov blanket B (X) .

[Compute Graph Structure]
For all X E V and Y E B(X), determine Y to be a direct neighbor of X if X and
Y are dependent given S for all S ~ T, where T is the smaller of B (X) - {Y} and
B(Y) - {X}.

[Orient Edges]
For all X E V and YEN (X), orient Y -+ X if there exists a variable Z E
N (X) - N (Y) - {Y} such that Y and Z are dependent given S U {X} for all S ~ U,
where U is the smaller of B (Y) - {Z} and B (Z) - {Y}.

[Remove Cycles]
Do the following while there exist cycles in the graph:

1. Compute the set of edges C = {X -+ Y such that X -+ Y is part of a cycle}.
2. Remove the edge in C that is part of the greatest number of cycles, and put it in

R.

508 D. Margaritis and S. Thrun

[Reverse Edges]
Insert each edge from R in the graph, reversed.

[Propagate Directions]
For all X E V and Y E N(X) such that neither Y ~ X nor X ~ Y, execute the
following rule until it no longer applies: If there exists a directed path from X to Y,
orient X ~ Y .

In the algorithm description above, step 2 determines which of the members of the blanket
of each node are actually direct neighbors (parents and children). Assuming, without loss of
generality, that B (X) - {Y} is the smaller set, if any of the tests are successful in separating
(making independent) X from Y, the algorithm determines that there is no direct connection
between them. That would happen when the conditioning set S includes all parents of X
and no common children of X and Y. It is interesting to note that the motivation behind
selecting the smaller set to condition on stems not only from computational efficiency

but from reliability as well: a conditioning set S causes the data set to be split into 21 S 1
partitions; smaller conditioning sets cause the data set to be split into larger partitions and
make dependence tests more reliable.
Step 3 exploits the fact that two variables that have a common descendant become dependent
when conditioning on a set that includes any such descendant. Since the direct neighbors
of X and Y are known from step 2, we can determine whether a direct neighbor Y is a
parent of X if there exists another node Z (which, coincidentally, is also a parent) such
that any attempt to separate Y and Z by conditioning on a subset of the blanket of Y that
includes X, fails (assuming that B(Y) is smaller than B(Z)). If the directionality is indeed
Y ~ X ~ Z, there should be no such subset since, by conditioning on X, a permanent
dependency path between Y and Z is created. This would not be the case if Y were a child
of X.
It is straightforward to show that the algorithm requires 0 (n2 + nb22b) conditional inde­
pendence tests, where b = maxx(IB(X)I). Under the assumption that b is bounded by a
constant, this algorithm is O(n 2) in the number of conditional independence tests. It is
worthwhile to note that the time to compute a conditional independence test by a pass over
the data set Dis O(n IDt) and not O(2IVI). An analysis and a formal proof of correctness
of the algorithm is presented in [Margaritis99].

Discussion

The main advantage of the algorithm comes through the use of Markov blankets to restrict
the size of the conditioning sets. The Markov blankets may be usually wrong in the side
of including too many nodes because they are represented by a disjunction of tests for
all values of the conditioning set, on the same data. This emphasizes the importance of
the "direct neighbors" step which removes nodes that were incorrectly added during the
Markov blanket computation step by admitting variables whose dependence was shown
high confidence in a large number of different tests.
It is also possible that an edge direction is wrongly determined during step 3 due to non­
representative or noisy data. This may lead to directed cycles in the resulting graph. It is
therefore necessary to remove those cycles by identifying the minimum set of edges than
need to be reversed for all cycles to disappear. This problem is closely related [Margaritis99]
to the Minimum Feedback Arc Set problem, which is concerned with identifying a minimum
set of edges that need to be removed from a graph that possibly contains directed cycles,
in order for all such cycles to disappear. Unfortunately, this problem is NP-complete in its
generality [Junger85]. We introduce here a reasonable heuristic for its solution that is based
on the number of cycles that an edge that is part of a cycle is involved in.
Not all edge directions can be determined during the last two steps. For example, nodes with
a single parent or multi-parent nodes (called colliders) whose parents are directly connected
do not apply to step 3, and steps 4 and 5 are only concerned with already directed edges.
Step 6 attempts to ameliorate that, through orienting edges in a way that does not introduce

Bayesian Network Induction via Local Neighborhoods 509

a cycle, if the reverse direction necessarily does. It is not obvious that, for example, if the
direction X -t Y produces a cycle in an otherwise acyclic graph, the opposite direction
Y -t X will not also. However, this is the case. For the proof of this, see [Margaritis99].
The algorithm is similar to the SGS algorithm presented in [Spirtes93], but differs in a
number of ways. Its main difference lies in the use of Markov blankets to dramatically
improve performance (in many cases where the bounded blanket size assumptions hold) .
Its structure is similar to SGS, and the stability (frequently referred to as robustness in the
following discussion) arguments presented in [Spirtes93] apply. Increased reliability stems
from the use of smaller conditioning sets, leading to greater number of examples per test.
The PC algorithm, also in [Spirtes93], differs from the GS algorithm in that it involves
linear probing for a separator set, which makes it unnecessarily inefficient.

4 Randomized Version of the GS Algorithm

The GS algorithm, as presented above, is appropriate for situations where the maximum
Markov blanket of each of a set of variables is small . While it is reasonable to assume
that in many real-life problems where high-level variables are involved this may be the
case, other problems such as Bayesian image retrieval in computer vision, may employ
finer representations. In these cases the variables used may depend in a direct manner on
many others. For example, we may choose to use variables to characterize local texture in
different parts of an image. If the resolution of the mapping from textures to variables is
increasingly fine, direct dependencies among those variables may be plentiful and therefore
the maximum Markov blanket size may be significant.
Another problem that has plagued independence-test based algorithms for Bayesian net
structure induction in general is that their decisions are based on a single or a few tests
("hard" decisions), making them prone to errors due to noise in the data. This also applies
to the the GS algorithm. It would therefore be advantageous to employ multiple tests before
deciding on a direct neighbor or the direction of an edge.
The randomized version of the GS algorithm addresses these two problems. Both of
them are tackled through randomized testing and Bayesian evidence accumulation. The
problem of exponential running times in the maximum blanket size of steps 2 and 3 of the
plain algorithm is overcome by replacing them by a series of tests, whose number may be
specified by the user, with the members of the conditioning set chosen randomly from the
smallest blanket of the two variables. Each such test provides evidence for or against the
direct connection between the two variables, appropriately weighted by the probability that
circumstances causing that event occur or not, and due to the fact that connectedness is the
conjunction of more elementary events.
This version of the algorithm is not shown here in detail due to space restrictions. Its
operation follows closely the one of the plain GS version. The main difference lies in the
usage of Bayesian updating of the posterior probability of a direct link (or a dependence
through a collider) between a pair of variables X and Y using conditional dependence tests
that take into account independent evidence. The posterior probability Pi of a link between
X and Y after executing i dependence tests dj, j = 1, .. . , i is

Pi-ldi
Pi= ------------~----------

Pi-ldi + (1 - Pi-d(G + 1 - dd

where G == G(X, Y) = 1 - (4)ITI is a factor that takes values in the interval [0,1) and
can be interpreted as the "(un)importance" of the truth of each test di , while T is the
smaller of B(X) - {Y} and B(Y) - {X}. We can use this accumulated evidence to guide
our decisions to the hypothesis that we feel most confident about. Besides being able to
do that in a timely manner due to the user-specified number of tests, we also note how
this approach also addresses the robustness problem mentioned above through the use of
mUltiple weighted tests, and leaving for the end the "hard" decisions that involve a threshold
(ie. comparing the posterior probability with a threshold, which in our case is ~) .

510 D. Margaritis and S. Thrun

Kl-divergance verSUS number of samples
0.00015 r--~--C...-~--~;;::Pla-:-in-::G::::SCN:-_-_--,

Randomized GS8N - ..
Hill-Clil"l"tling. score' data likelihood .. • ,.

Hill-Glirnblng, soore: BIC - .Q---

00001

5e-05

4000 BOOO 12000 16000 20000
Nurrber of sarrples

Edge errors versus number of sarrples
1~r---_--_-__ - __ -~

PlainGSBN -
Randomized GSBN ~ ...

Direction errors versus number of sarrplss
l00r-----------::p~lai~nG~Sr-BN~-~

Randomized GSBN ~ ...

125

I 100

.s
~ 75
GO

! SO
w

25

~.~

Hill-Clirrtling, score data likelihood . , ..
Hill-Climbing, soore: BIC - B -

Hill-Clirrbi~h~~i~~~~h~ .~_
1? 75

' .. III- ~
S

~ 50

i
i5 25

o OL---~--~--~---~-~
o 4000 8000 12000 18000 20000 0 4000 8000 12000 18000 20000

Nurrber of sarrples Number of 5a!1l)les

Figure 3: Results for a 5 x 5 rectangular net with branching factor 2 (in both directions, blanket size
8) as a function of the number of samples. On the top, KL-divergence is depicted for the plain GS,
randomized GS, and hill-climbing algorithms. On the bottom, the percentage of edge and direction
errors are shown. Note that certain edge error rates for the hill-climbing algorithm exceed 100%.

5 Results

Throughout the algorithms presented in this paper we employ standard chi-square (X 2) con­
ditional dependence tests (as is done also in [Spirtes93]) in order to compare the histograms
P(X) and P(X I Y). The X2 test gives us a probability of the error of assuming that the
two variables are dependent when in fact they are not (type II error of a dependence test),
from which we can easily derive the probability that X and Y are dependent. There is an
implicit confidence threshold T involved in each dependence test, indicating how certain
we wish to be about the correctness of the test without unduly rejecting dependent pairs,
something that is always possible in reality due to the presence of noise. In all experiments
we used T = 0.95, which corresponds to a 95% confidence test.
We test the effectiveness of the algorithms through the following procedure: we generate a
random rectangular net of specified dimensions and up/down branching factor. A number
of examples are drawn from that net using logic sampling and they are used as input to
the algorithm under test. The resulting nets can be compared with the original ones along
dimensions of KL-divergence and difference in edges and edge directionality. The KL­
divergence was estimated using a Monte Carlo procedure. An example reconstruction was
shown in the beginning of the paper, Fig. 1.
Fig. 3 shows how the KL-divergence between the original and the reconstructed net as well
as edge omissions/false additions/reversals as a function of number of samples used. It
demonstrates two facts. First, that typical KL-divergence for both GS and hill-climbing
algorithms is low (with hill-climbing slightly lower), which shows good performance for
applications where prediction is of prime concern. Second, the number of incorrect edges
and the errors in the directionality of the edges present is much higher for the hill-climbing
algorithm, making it unsuitable for accurate Bayesian net reconstruction.
Fig. 4 shows the effects of increasing the Markov blanket through an increasing branching
factor. As expected, we see a dramatic (exponential) increase in execution time of the plain

Bayesian Network Induction via Local Neighborhoods 511

Edge I Direction Errors versus Branching Factor
100r-------~~~----~~~----,

Edge errors, plain GSBN ~
90 Edge errors, randomized GSBN ---~---

22000
20000

Execution Time versus Branching Factor

Plain GSBN -­
Randomized GSBN ----K----

80 Direction errors, plain GSBN
Direction errors, randomized GSBN - &---

70

18000
16000

60

50

40

~
14000

~ 12000

~ 10000
i= 8000

30 ___ __ ___ _ __ _ ... ______ ___ ___ __ _
6000

2°L==~==~~·----=--- -=-----=----~-------------- ----l _ _ " _______ .olII ___ ____ __ • __ _

10 -.,,""'-.. -----.... _ . •
4000
2000

.-----

O~------~--------~--------~ O~------~--------~------~
2 3 4 5 2 3 4 5

Branching Factor Branching Factor

Figure 4: Results for a 5 x 5 rectangular net from which 10000 samples were generated and used
for reconstruction, versus increasing branching factor. On the left, errors are slowly increasing as
expected, but comparable for the plain and randomized versions of the GS algorithm. On the right,
corresponding execution times are shown.

GS algorithm, though only a mild increase of the randomized version. The latter uses 200
(constant) conditional tests per decision, and its execution time increase can be attributed
to the (quadratic) increase in the number of decisions. Note that the error percentages
between the plain and the randomized version remain relatively close. The number of
direction errors for the GS algorithm actually decreases due to the larger number of parents
for each node (more "V" structures), which allows a greater number of opportunities to
recover the directionality of an edge (using an increased number of tests).

6 Discussion

In this paper we presented an efficient algorithm for computing the Markov blanket of
a node and then used it in the two versions of the GS algorithm (plain and randomized)
by exploiting the properties of the Markov blanket to facilitate fast reconstruction of the
local neighborhood around each node, under assumptions of bounded neighborhood size.
We also presented a randomized variant that has the advantages of faster execution speeds
and added reconstruction robustness due to multiple tests and Bayesian accumulation of
evidence. Simulation results demonstrate the reconstruction accuracy advantages of the
algorithms presented here over hill-climbing methods. Additional results also show that
the randomized version has a dramatical execution speed benefit over the plain one in
cases where the assumption of bounded neighborhood does not hold, without significantly
affecting the reconstruction error rate.

References
[Chow68]

[Herskovits90]

[Spirtes93]

[PearI88]
[Rebane87]

[Verma90]
[Agosta88]
[Cheng97]

[Margaritis99]

[Jtinger85]

C.K. Chow and C.N. Liu. Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory, 14, 1968.
E.H. Herskovits and G.F. Cooper. Kutat6: An entropy-driven system for construc­
tion of probabilistic expert systems from databases. VAI-90.
P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search,
Springer, 1993.
1. Pearl. Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann, 1988.
G. Rebane and J. Pearl. The recovery of causal poly-trees from statistical data.
VAI-87.
T.S. Verma, and J. Pearl. Equivalence and Synthesis of Causal Models. VAI-90.
J.M. Agosta. The structure of Bayes networks for visual recognition. VAI-88.
1. Cheng, D.A. Bell, W. Liu, An algorithm for Bayesian network construction from
data. AI and Statistics, 1997.
D. Marg aritis , S. Thrun, Bayesian Network Induction via Local Neighborhoods.
TR CMV-CS-99-134, forthcoming.
M. Junger, Polyhedral combinatorics and the acyclic subdigraph problem, Helder­
mann, 1985.

