
Lower Bounds on the Complexity of
Approximating Continuous Functions by

Sigmoidal Neural Networks

Michael Schmitt
Lehrstuhl Mathematik und Informatik

FakuWit ftir Mathematik
Ruhr-Universitat Bochum

D-44780 Bochum, Germany
mschmitt@lmi.ruhr-uni-bochum.de

Abstract

We calculate lower bounds on the size of sigmoidal neural networks
that approximate continuous functions. In particular, we show
that for the approximation of polynomials the network size has
to grow as O((logk)1/4) where k is the degree of the polynomials.
This bound is valid for any input dimension, i.e. independently of
the number of variables. The result is obtained by introducing a
new method employing upper bounds on the Vapnik-Chervonenkis
dimension for proving lower bounds on the size of networks that
approximate continuous functions.

1 Introduction

Sigmoidal neural networks are known to be universal approximators. This is one of
the theoretical results most frequently cited to justify the use of sigmoidal neural
networks in applications. By this statement one refers to the fact that sigmoidal
neural networks have been shown to be able to approximate any continuous function
arbitrarily well. Numerous results in the literature have established variants of
this universal approximation property by considering distinct function classes to be
approximated by network architectures using different types of neural activation
functions with respect to various approximation criteria, see for instance [1, 2, 3, 5,
6, 11, 12, 14, 15]. (See in particular Scarselli and Tsoi [15] for a recent survey and
further references.)

All these results and many others not referenced here, some of them being construc­
tive, some being merely existence proofs, provide upper bounds for the network size
asserting that good approximation is possible if there are sufficiently many net­
work nodes available. This, however, is only a partial answer to the question that
mainly arises in practical applications: "Given some function, how many network
nodes are needed to approximate it?" Not much attention has been focused on
establishing lower bounds on the network size and, in particular, for the approx­
imation of functions over the reals. As far as the computation of binary-valued

Complexity of Approximating Continuous Functions by Neural Networks 329

functions by sigmoidal networks is concerned (where the output value of a network
is thresholded to yield 0 or 1) there are a few results in this direction. For a spe­
cific Boolean function Koiran [9] showed that networks using the standard sigmoid
u(y) = 1/(1 + e-Y) as activation function must have size O(nl/4) where n is the
number of inputs. (When measuring network size we do not count the input nodes
here and in what follows.) Maass [13] established a larger lower bound by construct­
ing a binary-valued function over IRn and showing that standard sigmoidal networks
require O(n) many network nodes for computing this function. The first work on
the complexity of sigmoidal networks for approximating continuous functions is due
to DasGupta and Schnitger [4]. They showed that the standard sigmoid in network
nodes can be replaced by other types of activation functions without increasing the
size of the network by more than a polynomial. This yields indirect lower bounds
for the size of sigmoidal networks in terms of other network types. DasGupta and
Schnitger [4] also claimed the size bound AO(I/d) for sigmoidal networks with d
layers approximating the function sin(Ax).

In this paper we consider the problem of using the standard sigmoid u(y) =
1/(1 + e-Y) in neural networks for the approximation of polynomials. We show
that at least O«logk)1/4) network nodes are required to approximate polynomials
of degree k with small error in the loo norm. This bound is valid for arbitrary input
dimension, i.e., it does not depend on the number of variables. (Lower bounds can
also be obtained from the results on binary-valued functions mentioned above by
interpolating the corresponding functions by polynomials. This, however, requires
growing input dimension and does not yield a lower bound in terms of the degree.)
Further, the bound established here holds for networks of any number of layers. As
far as we know this is the first lower bound result for the approximation of polyno­
mials. From the computational point of view this is a very simple class of functions;
they can be computed using the basic operations addition and multiplication only.
Polynomials also play an important role in approximation theory since they are
dense in the class of continuous functions and some approximation results for neu­
ral networks rely on the approximability of polynomials by sigmoidal networks (see,
e.g., [2, 15]).

We obtain the result by introducing a new method that employs upper bounds on
the Vapnik-Chervonenkis dimension of neural networks to establish lower bounds
on the network size. The first use of the Vapnik-Chervonenkis dimension to obtain
a lower bound is due to Koiran [9] who calculated the above-mentioned bound
on the size of sigmoidal networks for a Boolean function. Koiran's method was
further developed and extended by Maass [13] using a similar argument but another
combinatorial dimension. Both papers derived lower bounds for the computation
of binary-valued functions (Koiran [9] for inputs from {O, 1 }n, Maass [13] for inputs
from IRn). Here, we present a new technique to show that and how lower bounds can
be obtained for networks that approximate continuous functions. It rests on two
fundamental results about the Vapnik-Chervonenkis dimension of neural networks.
On the one hand, we use constructions provided by Koiran and Sontag [10] to build
networks that have large Vapnik-Chervonenkis dimension and consist of gates that
compute certain arithmetic functions. On the other hand, we follow the lines of
reasoning of Karpinski and Macintyre [7] to derive an upper bound for the Vapnik­
Chervonenkis dimension of these networks from the estimates of Khovanskil [8] and
a result due to Warren [16].

In the following section we give the definitions of sigmoidal networks and the Vapnik­
Chervonenkis dimension. Then we present the lower bound result for function
approximation. Finally, we conclude with some discussion and open questions.

330 M Schmitt

2 Sigmoidal Neural Networks and VC Dimension

We briefly recall the definitions of a sigmoidal neural network and the Vapnik­
Chervonenkis dimension (see, e.g., [7, 10]). We consider /eed/orward neural networks
which have a certain number of input nodes and one output node. The nodes
which are not input nodes are called computation nodes and associated with each
of them is a real number t, the threshold. Further, each edge is labelled with a
real number W called weight. Computation in the network takes place as follows:
The input values are assigned to the input nodes. Each computation node applies
the standard sigmoid u(y) = 1/(1 + e-V) to the sum W1Xl + ... + WrXr - t where
Xl, .•. ,Xr are the values computed by the node's predecessors, WI, ••• ,Wr are the
weights of the corresponding edges, and t is the threshold. The output value of the
network is defined to be the value computed by the output node. As it is common
for approximation results by means of neural networks, we assume that the output
node is a linear gate, i.e., it just outputs the sum WIXI + ... + WrXr - t. (Clearly,
for computing functions on finite sets with output range [0, 1] the output node
may apply the standard sigmoid as well.) Since u is the only sigmoidal function
that we consider here we will refer to such networks as sigmoidal neural networks.
(Sigmoidal functions in general need to satisfy much weaker assumptions than u
does.) The definition naturally generalizes to networks employing other types of
gates that we will make use of (e.g. linear, multiplication, and division gates).

The Vapnik-Chervonenkis dimension is a combinatorial dimension of a function class
and is defined as follows: A dichotomy of a set S ~ IRn is a partition of S into two
disjoint subsets (So, Sl) such that So U SI = S. Given a set F offunctions mapping
IRn to {O, I} and a dichotomy (So, Sd of S, we say that F induces the dichotomy
(So, Sd on S if there is some f E F such that /(So) ~ {O} and f(Sd ~ {I}.
We say further that F shatters S if F induces all dichotomies on S. The Vapnik­
Chervonenkis (VC) dimension of F, denoted VCdim(F), is defined as the largest
number m such that there is a set of m elements that is shattered by F. We refer
to the VC dimension of a neural network, which is given in terms of a "feedforward
architecture", i.e. a directed acyclic graph, as the VC dimension of the class of
functions obtained by assigning real numbers to all its programmable parameters,
which are in general the weights and thresholds of the network or a subset thereof.
Further, we assume that the output value of the network is thresholded at 1/2 to
obtain binary values.

3 Lower Bounds on Network Size

Before we present the lower bound on the size of sigmoidal networks required for
the approximation of polynomials we first give a brief outline of the proof idea.
We will define a sequence of univariate polynomials (Pn)n>l by means of which
we show how to construct neural architectures Nn consistmg of various types of
gates such as linear, multiplication, and division gates, and, in particular, gates
that compute some of the polynomials. Further, this architecture has a single
weight as programmable parameter (all other weights and thresholds are fixed).
We then demonstrate that, assuming the gates computing the polynomials can be
approximated by sigmoidal neural networks sufficiently well, the architecture Nn

can shatter a certain set by assigning suitable values to its programmable weight.
The final step is to reason along the lines of Karpinski and Macintyre [7] to obtain
via Khovanskil's estimates [8] and Warren's result [16] an upper bound on the VC
dimension of Nn in terms of the number of its computation nodes. (Note that we
cannot directly apply Theorem 7 of [7] since it does not deal with division gates.)
Comparing this bound with the cardinality of the shattered set we will then be able

Complexity of Approximating Continuous Functions by Neural Networks

(3)
W 1

(2)
W 1

(1)
W 1

W (3) (2) 1 P3 n Wi P 2 n Wj P1 n

(3)
Wn

(2)
Wn

(1)
Wn

j --------------------------------~

k--~

331

(1)
W k

Figure 1: The network Nn with values k, j, i, 1 assigned to the input nodes
Xl, X2, X3, X4 respectively. The weight W is the only programmable parameter of
the network.

to conclude with a lower bound on the number of computation nodes in Nn and
thus in the networks that approximate the polynomials.

Let the sequence (Pn)n2: l of polynomials over IR be inductively defined by

{ 4x(1 - x) n = 1 ,
Pn(X) = P(Pn-dx)) n 2:: 2 .

Clearly, this uniquely defines Pn for every n 2:: 1 and it can readily be seen that
Pn has degree 2n. The main lower bound result is made precise in the following
statement.

Theorem 1 Sigmoidal neural networks that approximate the polynomials (Pn)n >l
on the interval [0,1] with error at most O(2-n) in the 100 norm must have at least
n(nl/4) computation nodes.

Proof. For each n a neural architecture Nn can be constructed as follows: The
network has four input nodes Xl, X2, X3, X4. Figure 1 shows the network with input
values assigned to the input nodes in the order X4 = 1, X3 = i, X2 = j, Xl = k.
There is one weight which we consider as the (only) programmable parameter of
Nn . It is associated with the edge outgoing from input node X4 and is denoted
by w. The computation nodes are partitioned into six levels as indicated by the
boxes in Figure 1. Each level is itself a network. Let us first assume, for the sake of
simplicity, that all computations over real numbers are exact. There are three levels
labeled with II, having n + 1 input nodes and one output node each, that compute
so-called projections 7r : IRnH -+ IR where 7r(YI,"" Yn, a) = Ya for a E {I, ... , n}.

The levels labeled P3 , P2 , PI have one input node and n output nodes each. Level
P3 receives the constant 1 as input and thus the value W which is the parameter of
the network. We define the output values of level PA for>. = 3,2, 1 by

(A) (wb = Pbon"'-l v) , b= 1, ... ,n

where v denotes the input value to level PA. This value is equal to w for>. = 3 and
((A+l) ()..+l)) h . OUT h (A) bid f 7r WI , .•. , Wn ,XA+l ot erWlse. vve observe t at wb+l can e calcu ate rom

332 M Schmitt

w~A) as Pn>'_l(W~A»). Therefore, the computations of level PA can be implemented
using n gates each of them computing the function Pn>.-l.

We show now that Nn can shatter a set of cardinality n 3 • Let S = {I, ... ,n p. It
has been shown in Lemma 2 of [10] that for each (/31 , ... , /3r) E {O, 1 Y there exists
some W E [0,1] such that for q = 1, ... ,T

pq(w) E [0,1/2) if /3q = 0, and pq(w) E (1/2,1] if /3q = 1.

This implies that, for each dichotomy (So, Sd of S there is some W E [0,1] such
that for every (i, j, k) E S

Pk (pj.n (Pi.n2 (w))) < 1/2

Pk(Pj.n(Pi .n2 (w))) > 1/2

if (i, j, k) E So ,

if (i,j,k)ES1'

Note that Pk(Pj.n(Pi.n2 (w))) is the value computed by Nn given input values k, j, i, 1.
Therefore, choosing a suitable value for w, which is the parameter of Nn , the network
can induce any dichotomy on S. In other words, S is shattered by Nn .

It has been shown in Lemma 1 of [10] that there is an architecture An such that
for each E > ° weights can be chosen for An such that the function in,€ computed
by this network satisfies lim€~o in,€(Yl, ... ,Yn, a) = Ya. Moreover, this architecture
consists of O(n) computation nodes, which are linear, multiplication, and division
gates. (Note that the size of An does not depend on E.) Therefore, choosing E
sufficiently small, we can implement the projections 1r in Nn by networks of O(n)
computation nodes such that the resulting network N~ still shatters S. Now in N~
we have O(n) computation nodes for implementing the three levels labeled II and
we have in each level PA a number of O(n) computation nodes for computing Pn>.-l,
respectively. Assume now that the computation nodes for Pn>.-l can be replaced
by sigmoidal networks such that on inputs from S and with the parameter values
defined above the resulting network N:: computes the same functions as N~. (Note
that the computation nodes for Pn>.-l have no programmable parameters.)

We estimate the size of N::. According to Theorem 7 of Karpinski and Macintyre
[7] a sigmoidal neural network with I programmable parameters and m computation
nodes has VC dimension O((ml)2). We have to generalize this result slightly before
being able to apply it. It can readily be seen from the proof of Theorem 7 in [7] that
the result also holds if the network additionally contains linear and multiplication
gates. For division gates we can derive the same bound taking into account that for
a gate computing division, say x/y, we can introduce a defining equality x = z . Y
where z is a new variable. (See [7] for how to proceed.) Thus, we have that a
network with I programmable parameters and m computation nodes, which are
linear, multiplication, division, and sigmoidal gates, has VC dimension O((ml)2).
In particular, if m is the number of computation nodes of N::, the VC dimension
is O(m2). On the other hand, as we have shown above, N:: can shatter a set
of cardinality n3 • Since there are O(n) sigmoidal networks in N:: computing the
functions Pn>.-l, and since the number of linear, multiplication, and division gates
is bounded by O(n), for some value of A a single network computing Pn>.-l must
have size at least O(fo). This yields a lower bound of O(nl/4) for the size of a
sigmoidal network computing Pn.

Thus far, we have assumed that the polynomials Pn are computed exactly. Since
polynomials are continuous functions and since we require them to be calculated
only on a finite set of input values (those resulting from S and from the parameter
values chosen for w to shatter S) an approximation of these polynomials is sufficient.
A straightforward analysis, based on the fact that the output value of the network
has a "tolerance" close to 1/2, shows that if Pn is approximated with error O(2-n)

Complexity of Approximating Continuous Functions by Neural Networks 333

in the loo norm, the resulting network still shatters the set S. This completes the
proof of the theorem. D

The statement of the previous theorem is restricted to the approximation of poly­
nomials on the input domain [0,1]. However, the result immediately generalizes to
any arbitrary interval in llt Moreover, it remains valid for multivariate polynomials
of arbitrary input dimension.

Corollary 2 The approximation of polynomials of degree k by sigmoidal neural
networks with approximation error O(ljk) in the 100 norm requires networks of size
O((log k)1/4). This holds for polynomials over any number of variables.

4 Conclusions and Open Questions

We have established lower bounds on the size of sigmoidal networks for the approx­
imation of continuous functions. In particular, for a concrete class of polynomials
we have calculated a lower bound in terms of the degree of the polynomials. The
main result already holds for the approximation of univariate polynomials. Intu­
itively, approximation of multivariate polynomials seems to become harder when
the dimension increases. Therefore, it would be interesting to have lower bounds
both in terms of the degree and the input dimension.

Further, in our result the approximation error and the degree are coupled. Naturally,
one would expect that the number of nodes has to grow for each fixed function when
the error decreases. At present we do not know of any such lower bound.

We have not aimed at calculating the constants in the bounds. For practical appli­
cations such values are indispensable. Refining our method and using tighter results
it should be straightforward to obtain such numbers. Further, we expect that better
lower bounds can be obtained by considering networks of restricted depth.

To establish the result we have introduced a new method for deriving lower bounds
on network sizes. One of the main arguments is to use the functions to be approxi­
mated to construct networks with large VC dimension. The method seems suitable
to obtain bounds also for the approximation of other types of functions as long as
they are computationally powerful enough.

Moreover, the method could be adapted to obtain lower bounds also for networks
using other activation functions (e.g. more general sigmoidal functions, ridge func­
tions, radial basis functions). This may lead to new separation results for the
approximation capabilities of different types of neural networks. In order for this
to be accomplished, however, an essential requirement is that small upper bounds
can be calculated for the VC dimension of such networks.

Acknowledgments

I thank Hans U. Simon for helpful discussions. This work was supported in part
by the ESPRIT Working Group in Neural and Computational Learning II, Neuro­
COLT2, No. 27150.

References

[1] A. Barron. Universal approximation bounds for superposition of a sigmoidal
function. IEEE Transactions on Information Theory, 39:930--945, 1993.

334 M Schmitt

[2J C. K. Chui and X. Li. Approximation by ridge functions and neural networks
with one hidden layer. Journal of Approximation Theory, 70:131-141,1992.

[3J G. Cybenko. Approximation by superpositions of a sigmoidal function. Math­
ematics of Control, Signals, and Systems, 2:303-314, 1989.

[4J B. DasGupta and G. Schnitger. The power of approximating: A comparison
of activation functions. In C. L. Giles, S. J. Hanson, and J. D. Cowan, editors,
Advances in Neural Information Processing Systems 5, pages 615-622, Morgan
Kaufmann, San Mateo, CA, 1993.

[5] K. Hornik. Approximation capabilities of multilayer feedforward networks.
Neural Networks, 4:251-257, 1991.

[6] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks
are universal approximators. Neural Networks, 2:359-366, 1989.

[7] M. Karpinski and A. Macintyre. Polynomial bounds for VC dimension of
sigmoidal and general Pfaffian neural networks. Journal of Computer and
System Sciences, 54:169-176, 1997.

[8] A. G. Khovanskil. Fewnomials, volume 88 of Translations of Mathematical
Monographs. American Mathematical Society, Providence, RI, 1991.

[9] P. Koiran. VC dimension in circuit complexity. In Proceedings of the 11th
Annual IEEE Conference on Computational Complexity CCC'96, pages 81-85,
IEEE Computer Society Press, Los Alamitos, CA, 1996.

[10] P. Koiran and E. D. Sontag. Neural networks with quadratic VC dimension.
Journal of Computer and System Sciences, 54:190-198, 1997.

[11] V. Y. Kreinovich. Arbitrary nonlinearity is sufficient to represent all functions
by neural networks: A theorem. Neural Networks, 4:381-383, 1991.

[12] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. Multilayer feedforward net­
works with a nonpolynomial activation function can approximate any function.
Neural Networks, 6:861-867, 1993.

[13] W. Maass. Noisy spiking neurons with temporal coding have more compu­
tational power than sigmoidal neurons. In M. Mozer, M. 1. Jordan, and
T. Petsche, editors, Advances in Neural Information Processing Systems 9,
pages 211-217. MIT Press, Cambridge, MA, 1997.

[14] H. Mhaskar. Neural networks for optimal approximation of smooth and analytic
functions. Neural Computation, 8:164-177, 1996.

[15J F. Scarselli and A. C. Tsoi. Universal approximation using feedforward neural
networks: A survey of some existing methods and some new results. Neural
Networks, 11:15-37, 1998.

[16] H. E. Warren. Lower bounds for approximation by nonlinear manifolds. Trans­
actions of the American Mathematical Society, 133:167-178, 1968.

