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Abstract 

A latent variable generative model with finite noise is used to de
scribe several different algorithms for Independent Components Anal
ysis (lCA). In particular, the Fixed Point ICA algorithm is shown to 
be equivalent to the Expectation-Maximization algorithm for maximum 
likelihood under certain constraints, allowing the conditions for global 
convergence to be elucidated. The algorithms can also be explained by 
their generic behavior near a singular point where the size of the opti
mal generative bases vanishes. An expansion of the likelihood about this 
singular point indicates the role of higher order correlations in determin
ing the features discovered by ICA. The application and convergence of 
these algorithms are demonstrated on a simple illustrative example. 

Introduction 

Independent Components Analysis (lCA) has generated much recent theoretical and prac
tical interest because of its successes on a number of different signal processing problems. 
ICA attempts to decompose the observed data into components that are as statistically in
dependent from each other as possible, and can be viewed as a nonlinear generalization of 
Principal Components Analysis (PCA). Some applications of ICA include blind separation 
of audio signals, beamforming of radio sources, and discovery of features in biomedical 
traces [I] . 

There have also been a number of approaches to deriving algorithms for ICA [2, 3, 4]. 
Fundamentally, they all consider the problem of recovering independent source signals {s} 
from observations {x} such that: 

M 

Xi = L WijS j , i = l..N (I) 
j = 1 

Here, Wij is a N x M mixing matrix where the number of sources M is not greater than 
the dimensionality N of the observations. Thus, the columns of W represent the different 
independent features present in the observed data. 

Bell and Sejnowski formulated their Infomax algorithm for ICA as maximizing the mutual 
information between the data and a nonlinearly transformed version of the data [5]. The 
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covariant version of this algorithm uses the natural gradient of the mutual information to 
iteratively update the estimate for the demixing matrix W- 1 in terms of the estimated 
componentss = W - 1x [6]: 

.6.W-1 ex: [1 - (g(s)sT)] W- 1, (2) 

The nonlinearity g( s) differentiates the features learned by the lnfomax ICA algorithm 
from those found by conventional PCA. Fortunately, the exact form of the nonlinearity 
used in Eq. 2 is not crucial for the success of the algorithm, as long as it preserves the 
sub-Gaussian or super-Gaussian nature of the sources [7] . 

Another approach to ICA due to Hyvarinen and Oja was derived from maximizing objective 
functions motivated by projection pursuit [8]. Their Fixed Point ICA algorithm attempts 
to self-consistently solve for the extremum of a nonlinear objective function. The simplest 
formulation considers a single source M = 1 so that the mixing matrix is a single vector 
w, constrained to be unit length Iwl = 1. Assuming the data is first preprocessed and 
whitened, the Fixed Point ICA algorithm iteratively updates the estimate of w as follows: 

w t- (xg(wT x) - ACW 

w 
(3) w t-

Iwl' 
where g(wT x) is a nonlinear function and AC is a constant given by the integral over the 
Gaussian: 

(4) 

The Fixed Point algorithm can be extended to an arbitrary number M ~ N of sources by 
using Eq. 3 in a serial deflation scheme. Alternatively, the M columns of the mixing matrix 
W can be updated simultaneously by orthogonalizing the N x M matrix : 

(5) 

Under the assumption that the observed data match the underlying ICA model, x = W s, it 
has been shown that the Fixed Point algorithm converges locally to the correct solution with 
at least quadratic convergence. However, the global convergence of the generic Fixed Point 
ICA algorithm is uncertain . This is in contrast to the gradient-based lnfomax algorithm 
whose convergence is guaranteed as long as a sufficiently small step size is chosen. 

In this paper, we first review the latent variable generative model framework for Indepen
dent Components Analysis. We then consider the generative model in the presence of finite 
noise, and show how the Fixed Point ICA algorithm can be related to an Expectation
Maximization algorithm for maximum likelihood. This allows us to elucidate the condi
tions under which the Fixed Point algorithm is guaranteed to globally converge. Assuming 
that the data are indeed generated from independent components, we derive the optimal 
parameters for convergence. We also investigate how the optimal size of the ICA mixing 
matrix varies as a function of the added noise, and demonstrate the presence of a singular 
point. By expanding the likelihood about this singular point, the behavior of the ICA algo
rithms can be related to the higher order statistics present in the data. Finally, we illustrate 
the application and convergence of these ICA algorithms on some artificial data. 

Generative model 

A convenient method for interpreting the different ICA algorithms is in terms of the hidden, 
or latent, variable generative model shown in Fig. 1 [9, 10]. The hidden variables {s j} 
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M hidden variables 

N visible variables 

Figure 1: Generative model for ICA algorithms. s are the hidden variables, Ij are additive 
Gaussian noise terms, and x = W s + Ij are the visible variables. 

correspond to the different independent components and are assumed to have the factorized 
non-Gaussian prior probability distribution: 

M 

P(s ) = II e-F(Sj). (6) 
j=l 

Once the hidden variables are instantiated, the visible variables {x t } are generated via a 
linear mapping through the generative weights W: 

N 1 [1 1 P(xls) = II ~ exp - 2lj2 (Xi - L WijSj)2 , 
i = l 7T1j j 

(7) 

where 1j2 is the variance of the Gaussian noise added to the visible variables. 

The probability of the data given this model is then calculated by integrating over all pos
sible values of the hidden variables: 

P(x ) = f ds P(s)P(xls) = (27T1j;) N/2 f ds exp [-F(S) - 2~2 (x - WS)2] (8) 

In the limit that the added noise vanishes, 1j2 -T 0, it has previously been shown that 
maximizing the likelihood of Eq. 8 is equivalent to the Infomax algorithm in Eq. 2 [11]. 
In the following analysis , we will consider the situation when the variance of the noise is 
nonzero, 1j2 1= o. 

Expectation-Maximization 

We assume that the data has initially been preprocessed and spherized: (XiXj ) = Oij . 
Unfortunately, for finite noise 1j2 and an arbitrary prior F(sj) , deriving a learning rule for 
W in closed form is analytically intractable. However, it becomes possible to derive a 
simple Expectation-Maximization (EM) learning rule under the constraint: 

W = ~Wo , wlwo = I , (9) 

which implies that W is orthogonal, and ~ is the length of the individual columns of W . 
Indeed, for data that obeys the ICA model, x = W s, it can be shown that the optimal W 
must satisfy this orthogonality condition. By assuming the constraint in Eq. 9 for arbitrary 
data, the posterior distribution P(slx) becomes conveniently factorized: 

F(.lx) ()( i! exp [-F(';) + :' I(WT x);,; - ~e';ll· (10) 
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For the E-step, this factorized form allows the expectation function J ds P(slx)s = 
g(WT x) to be analytically evaluated. This expectation is then used in the M-step to find 
the new estimate W': 

(xg(WT x)T) - AsW' = 0, (11 ) 

where As is a symmetric matrix of Lagrange multipliers that constrain the new W' to be 
orthogonal. Eq . 11 is easily solved by taking the reduced singular value decomposition of 
the rectangular matrix: 

(12) 

where UTU = VVT = I and D is a diagonal M x M matrix. Then the solution for the 
EM estimate of the mixing matrix is given by: 

W' 

As 

(13) 

(14) 

As a specific example, consider the following prior for binary hidden variables: P( s) = 
~[8(s - 1) + 8(s + 1)]. In this case, the expectation J ds P(slx)s = tanh(WT X/(j2) and 
so the EM update rule is given by onhogonalizing the matrix: 

W f- (xtanh(:2 WT X)) . (15) 

Fixed Point leA 

Besides the presence of the linear term AC Win Eq. 5, the EM update rule looks very much 
like that of the Fixed Point leA algorithm. It turns out that without this linear term, the 
convergence of the naive EM algorithm is much slower than that of Eq. 5. Here we show 
that it is possible to interpret the role of this linear term in the Fixed Point leA algorithm 
within the framework of this generative model. 

Suppose that the distribution of the observed data PD (x) is actually a mixture between an 
isotropic distribution Po(x) and a non-isotropic distribution P1 (x): 

PD(X) = aPo(x) + (1 - a)P1 (x). (16) 

Because the isotropic part does not break rotational symmetry, it does not affect the choice 
of the directions of the learned basis W . Thus, it is more efficient to apply the learning 
algorithm to only the non-isotropic portion of the distribution, Pt (x) (X PD(X) - aPo(x), 
rather than to the whole observed distribution PD(X). Applying EM to P1 (x) results in a 
correction term arising from the subtracted isotropic distribution . With this correction, the 
EM update becomes: 

W f- (xg(WT x)) - aAcW (17) 

which is equivalent to the Fixed Point leA algorithm when a = 1. 

Unfortunately, it is not clear how to compute an appropriate value for a to use in fitting data. 
Taking a very small value, a « 1, will result in a learning rule that is very similar to the 
naive EM update rule. This implies that the algorithm will be guaranteed to monotonically 
converge, albeit very slowly, to a local maximum of the likelihood. On the other hand, 
choosing a large value, a » 1, will result in a subtracted probability density P1 (x) that is 
negative everywhere. In this case, the algorithm will converge slowly to a local minimum 
of the likelihood. For the Fixed Point algorithm which operates in the intermediate regime, 
a ~ 1, the algorithm is likely to converge most rapidly. However, it is also in this situation 
that the subtracted density P1 (x) could have both positive and negative regions, and the 
algorithm is no longer guaranteed to converge. 
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Noise 0 2 

Figure 2: Size of the optimal generative bases as a function of the added noise (J2, showing 
the singular point behavior around (J~ ~ 1. 

Optimal value of a 

In order to determine the optimal value of a, we make the assumption that the observed 
data obeys the ICA model, x = A8. Note that the statistics of the sources in the data need 
not match the assumed prior distribution of the sources in the generative model Eq. 6. With 
this assumption, which is not related to the mixture assumption in Eq. 16, it is easy to show 
that W = A is a fixed point of the algorithm. By analyzing the behavior of the algorithm 
in the vicinity of this fixed point, a simple expression emerges for the change in deviations 
from this fixed point, 8W, after a single iteration of Eq. 17: 

(g'(8)) - aAG 3 
8Wij +- ( ()) A 8Wij + O(8W ) (18) 8g 8 - a G 

where the averaging here is over the true source distribution, assumed for simplicity to be 
identical for all sources. Thus, the algorithm converges most rapidly if one chooses: 

(g' (8)) 
aopt = AG ' (19) 

so that the local convergence is cubic. From Eq. 18 one can show that the condition for the 
stability of the fixed point is given by a < ae , where: 

(8g(8) + g'(8)) 
ac = 2AG . (20) 

Thus, for a = 0, the stability criterion in Eq. 18 is equivalent to (8g( 8)) > (g' (8)). For the 
cubic nonlinearity g( 8) = S3, this implies that the algorithm will find the true independent 
features only if the source distribution has positive kurtosis. 

Singular point expansion 

Let us now consider how the optimal size ~ of the weights W varies as a function of the 
noise parameter (J2. For very small (J2 « 1, the weights W are approximately described 
by the Infomax algorithm of Eq. 2, and the lengths of the columns should be unity in order 
to match the covariance of the data. For large (12 » 1, however, the optimal size of the 
weights should be very small because the covariance of the noise is already larger than that 
of the data. In fact, for Factor Analysis which is a special case of the generative model 
with F(s) = ~s2 in Eq. 6, it can be shown that the weights are exactly zero, W = 0, for 
(J2 > 1. 

Thus, the size of the optimal generative weights W varies with (J2 as shown qualitatively 
in Fig. 2. Above a certain critical noise value (J~ ~ 1, the weights are exactly equal to 
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Figure 3: Convergence of the modified EM algorithm as a function of a . With 9(S) = 
tanh(s) as the nonlinearity, the likelihood (In cosh{WT x)) is plotted as a function of the 
iteration number. The optimal basis W are plotted on the two-dimensional data distribution 
when the likelihood is maximized (top) and minimized (bottom). 

zero, W = O. Only below this critical value do the weights become nonzero. We expand 
the likelihood of the generative model in the vicinity of this singular point. This expansion 
is well-behaved because the size of the generative weights W acts as a small perturbative 
parameter in this expansion. The log likelihood of the model around this singular value is 
then given by: 

L = �-�~�T�r� [WWT - {I _ (j2)J] 2 

4 
1 

+ 4! L kurt{sm) (XiXjXkXI)c WimWjmWkmWlm 
ijklm 

+0(1 _ (j2)3, 

(21) 

where kurt(sm) represents the kurtosis of the prior distribution over the hidden variables. 
Note that this expansion is valid for any symmetric prior, and differs from other expansions 
that assume small deviations from a Gaussian prior [12, 13]. Eq. 21 shows the importance 
of the fourth-order cumulant of the observed data in breaking the rotational degeneracy of 
the weights W. The generic behavior of ICA is manifest in optimizing the cumulant term 
in Eq.21, and again depends crucially on the sign of the kurtosis that is used for the prior. 

Example with artificial data 

As an illustration of the convergence of the algorithm in Eq. 17, we consider the simple 
two-dimensional uniform distribution: 

P(x x) = {1/12, �-�v�l�s�~�.� Xl, X2 �~� vis (22) 
I, 2 0, otherWIse 

With 9(S) = tanh(s) as the nonlinearity, Fig. 3 shows how the overall likelihood con
verges for different values of the parameter a as the algorithm is iterated. For a �~� 1.0, 
the algorithm converges to a maximum of the likelihood, with the fastest convergence at 
aopt = 0.9. However, for a > 1.2, the algorithm converges to a minimum of the like
lihood. At an intermediate value, a = 1.1, the likelihood does not converge at all, fluc
tuating wildly between the maximum and minimum likelihood solutions. The maximum 




