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Abstract 

The Facial Action Coding System (FACS) (9) is an objective 
method for quantifying facial movement in terms of component 
actions. This system is widely used in behavioral investigations 
of emotion, cognitive processes, and social interaction. The cod­
ing is presently performed by highly trained human experts. This 
paper explores and compares techniques for automatically recog­
nizing facial actions in sequences of images. These methods include 
unsupervised learning techniques for finding basis images such as 
principal component analysis, independent component analysis and 
local feature analysis, and supervised learning techniques such as 
Fisher's linear discriminants. These data-driven bases are com­
pared to Gabor wavelets, in which the basis images are predefined. 
Best performances were obtained using the Gabor wavelet repre­
sentation and the independent component representation, both of 
which achieved 96% accuracy for classifying 12 facial actions. The 
ICA representation employs 2 orders of magnitude fewer basis im­
ages than the Gabor representation and takes 90% less CPU time 
to compute for new images. The results provide converging support 
for using local basis images, high spatial frequencies, and statistical 
independence for classifying facial actions. 

1 Introduction 

Facial expressions provide information not only about affective state, but also about 
cognitive activity, temperament and personality, truthfulness, and psychopathology. 
The Facial Action Coding System (FACS) (9) is the leading method for measur­
ing facial movement in behavioral science. FACS is performed manually by highly 
trained human experts. A FACS coder decomposes a facial expression into com­
ponent muscle movements (Figure 1). Ekman and Friesen described 46 distinct 
facial movements, and over 7000 distinct combinations of such movements have 
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been observed in spontaneous behavior. An automated system would make facial 
expression measurement more widely accessible as a research tool for behavioral sci­
ence and medicine. Such a system would also have application in human-computer 
interaction tools and low bandwidth facial animation coding. 

A number of systems have appeared in the computer vision literature for classifying 
facial expressions into a few basic categories of emotion, such as happy, sad, or 
surprised. While such approaches are important, an objective and detailed measure 
of facial activity such as FACS is needed for basic research into facial behavior. In a 
system being developed concurrently for automatic facial action coding, Cohn and 
colleagues (7) employ feature point tracking of a select set of image points. Tech­
niques employing 2-D image filters have proven to be more effective than feature­
based representations for face image analysis [e.g. (6)]. Here we examine image 
analysis techniques that densely analyze graylevel information in the face image. 

This work surveys and compares techniques for face image analysis as applied to 
automated FACS encoding. l The analysis focuses on methods for face image repre­
sentation in which image graylevels are described as a linear superposition of basis 
images. The techniques were compared on a common image testbed using common 
similarity measures and classifiers. 

We compared four representations in which the basis images were learned from 
the statistics of the face image ensemble. These include unsupervised learning 
techniques such as principal component analysis (PCA), and local feature analy­
sis (LFA), which are learned from the second-order dependences among the image 
pixels, and independent component analysis (ICA) which is learned from the high­
order dependencies as well. We also examined a representation obtained through 
supervised learning on the second-order image statistics, Fisher's linear discrimi­
nants (FLD). Classification performances with these data-driven basis images were 
compared to Gabor wavelets, in which the basis images were pre-defined. We ex­
amined properties of optimal basis images, where optimal was defined in terms of 
classification. 

Generalization to novel faces was evaluated using leave-one-out cross-validation. 
Two basic classifiers were employed: nearest neighbor and template matching, where 
the templates were the mean feature vectors for each class. Two similarity measures 
were employed for each classifier: Euclidean distance and cosine of the angle between 
feature vectors. 

2 1 
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AU 2 Outer brow raiser 

AU 4 Brow lowerer 

h. 

Figure 1: a. The facial muscles underlying six of the 46 facial actions. b. Cropped 
face images and 8-images for three facial actions (AU's). 

1 A detailed description of this work appears in (8). 
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2 Image Database 

We collected a database of image sequences of subjects performing specified facial 
actions. The database consisted of image sequences of subjects performing specified 
facial actions. Each sequence began with a neutral expression and ended with a high 
magnitude muscle contraction. For this investigation, we used 111 sequences from 
20 subjects and attempted to classify 12 actions: 6 upper face actions and 6 lower 
face actions. Upper and lower-face actions were analyzed separately since facial 
motions in the lower face do not effect the upper face, and vice versa (9). 

The face was located in the first frame in each sequence using the centers of the 
eyes and mouth. These coordinates were obtained manually by a mouse click. The 
coordinates from Frame 1 were used to register the subsequent frames in the se­
quence. The aspect ratios of the faces were warped so that the eye and mouth 
centers coincided across all images. The three coordinates were then used to rotate 
the eyes to horizontal, scale, and finally crop a window of 60 x 90 pixels containing 
the upper or lower face. To control for variations in lighting, logistic threshold­
ing and luminance scaling was performed (13). Difference images (b-images) were 
obtained by subtracting the neutral expression in the first image of each sequence 
from the subsequent images in the sequence. 

3 Unsupervised learning 
3.1 Eigenfaces (peA) 

A number of approaches to face image analysis employ data-driven basis vectors 
learned from the statistics of the face image ensemble. Techniques such as eigen­
faces (17) employ principal component analysis, which is an unsupervised learning 
method based on the second-order dependencies among the pixels (the pixelwise 
covariances). PCA has been applied successfully to recognizing facial identity (17), 
and full facial expressions (14). 

Here we performed PCA on the dataset of b-images, where each b-image comprised 
a point in Rn given by the brightness of the n pixels. The PCA basis images 
were the eigenvectors of the covariance matrix (see Figure 2a), and the first p 
components comprised the representation. Multiple ranges of components were 
tested, from p = 10 to P = 200, and performance was also tested excluding the 
first 1-3 components. Best performance of 79.3% correct was obtained with the 
first 30 principal components, using the Euclidean distance similarity measure and 
template matching classifier. 

Padgett and Cottrell (14) found that a local PCA representation outperformed 
global PCA for classifying full facial expressions of emotion. Following the meth­
ods in (14), a set of local basis images was derived from the principal components 
of 15x 15 image patches from randomly sampled locations in the b-images (see 
Figure 2d.) The first p principal components comprised a basis set for all image 
locations, and the representation was downsampled by a factor of 4. Best perfor­
mance of 73.4% was obtained with components 2-30, using Euclidean distance and 
template matching. Unlike the findings in (14), local basis images obtained through 
PCA were not more effective than global PCA for facial action coding. A second 
local implementation of PCA, in which the principal components were calculated 
for fixed 15x 15 image patches also failed to improve over global PCA. 

3.2 Local Feature Analysis (LFA) 

Penev and Atick (15) recently developed a local, topographic representation based 
on second-order image statistics called local feature analysis (LF A). The kernels are 
derived from the principal component axes, and consist of a "whitening" step to 
equalize the variance of the PCA coefficients, followed by a rotation to pixel space. 
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Figure 2: a. First 4 PCA basis images. b. Four ICA basis images. The ICA basis 
images are local, spatially opponent, and adaptive. c. Gabor kernels are local, 
spatially opponent, and predefined. d. First 4 local PCA basis images. 

We begin with the matrix P containing the principal component eigenvectors in 
its columns, and Ai are the corresponding eigenvalues. Each row of the matrix K 
serves as an element of the LFA image dictionary2 

K = pVpT where V = D-! = diag( ~) i = 1, ... ,p (1) 
V Ai 

where Ai are the eigenvalues. The rows of K were found to have spatially local prop­
erties, and are "topographic" in the sense that they are indexed by spatial location 
(15). The dimensionality of the LFA representation was reduced by employing an 
iterative sparsification algorithm based on multiple linear regression described in 
(15). 

The LFA representation attained 81.1 % correct classification performance. Best 
performance was obtained using the first 155 kernels, the cosine similarity measure, 
and nearest neighbor classifier. Classification performance using LFA was not sig­
nificantly different from the performance using peA. Although a face recognition 
algorithm based on the principles of LFA outperformed Eigenfaces in the March 
1995 FERET competition, the exact algorithm has not been disclosed. Our results 
suggest that an aspect of the algorithm other than the LFA representation accounts 
for the difference in performance. 

3.3 Independent Component Analysis (ICA) 

Representations such as Eigenfaces, LFA, and FLD are based on the second-order 
dependencies among the pixels, but are insensitive to the high-order dependencies. 
High-order dependencies are relationships that cannot be described by a linear pre­
dictor. Independent component analysis (ICA) learns the high-order dependencies 
in addition to the second-order dependencies among the pixels. 

2 An image dictionary is a set of images that decomposes other images, e.g. through 
inner product. Here it finds the coefficients for the basis set K- 1 
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The ICA representation was obtained by performing Bell & Sejnowski's infomax 
algorithm (4) (5) on the ensemble of ~-images in the rows of the matrix X. The 
images in X were assumed to be a linear mixture of an unknown set of independent 
source images which were recovered through ICA. In contrast to PCA, the ICA 
source images were local in nature (see Figure 2b). These source images provided 
a basis set for the expression images. The coefficients of each image with respect 
to the new basis set were obtained from the estimated mixing matrix A ~ W- 1 , 

where W is the ICA weight matrix [see (1), (2)]. 

Unlike PCA, there is no inherent ordering to the independent components of the 
dataset. We therefore selected as an ordering parameter the class discriminability of 
each component, defined as the ratio of between-class to within-class variance. Best 
performance of 95.5% was obtained with the first 75 components selected by class 
discriminability, using the cosine similarity measure, and nearest neighbor classifier. 
Independent component analysis gave the best performance among all of the data­
driven image kernels. Class discriminability analysis of a PCA representation was 
previously found to have little effect on classification performance with PCA (2). 

4 Supervised learning: Fisher's Linear Discriminants (FLD) 

A class specific linear projection of a PCA representation of faces was recently 
shown to improve identity recognition performance (3). The method employs a 
classic pattern recognition technique, Fisher's linear discriminant (FLD), to project 
the images into a c - 1 dimensional subspace in which the c classes are maximally 
separated. Best performance was obtained by choosingp = 30 principal components 
to first reduce the dimensionality of the data. The data was then projected down 
to 5 dimensions via the FLD projection matrix, W,ld. The FLD image dictionary 
was thus Wpca * W,ld. Best performance of 75.7% correct was obtained with the 
Euclidean distance similarity measure and template matching classifier. 

FLD provided a much more compact representation than PCA. However, unlike the 
results obtained by (3) for identity recognition, Fisher's Linear Discriminants did 
not improve over basic PCA (Eigenfaces) for facial action classification. The differ­
ence in performance may be due to the low dimensionality of the final representation 
here. Class discriminations that are approximately linear in high dimensions may 
not be linear when projected down to as few as 5 dimensions. 

5 Predefined image kernels: Gabor wavelets 

An alternative to the adaptive bases described above are wavelet decompositions 
based on predefined families of Gabor kernels. Gabor kernels are 2-D sine waves 
modulated by a Gaussian (Figure 2c). Representations employing families of Gabor 
filters at multiple spatial scales, orientations, and spatial locations have proven 
successful for recognizing facial identity in images (11). Here, the ~-images were 
convolved with a family of Gabor kernels 'l/Ji, defined as 

( .... ) IIkill2 _"kjlI2IzI2 [}'k .i _0'2] 'l/Ji X = --2-e 20'2 e' - e 2 
u 

(2) 

where ki = ( it c~s'Pl-' ) Iv = 2-~7r, 'PI-' = J.t'!!g. 
J v sm 'PI-' ' 

Following (11), the representation consisted of the amplitudes at 5 frequencies (v = 
0-4) and 8 orientations (J.t = 1 - 8). Each filter output was downsampled by a 
factor q and normalized to unit length. We tested the performance of the system 
using q = 1,4,16 and found that q = 16 yielded the best generalization rate. Best 
performance was obtained with the cosine similarity measure and nearest neighbor 
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classifier. Classification performance with the Gabor representation was 95.5%. 
This performance was significantly higher than all of the data-driven approaches in 
the comparison except independent component analysis, with which it tied. 

6 Results and Conclusions 

PCA Local PCA LFA ICA FLD Gabor 
79.3 ±3.9 73.4 ±4.2 81.1 ±3.7 95.5 ±2.0 75.7 ±4.1 95.5 ±2.0 

Table 1: Summary of classification performance for 12 facial actions. 

We have compared a number of different image analysis methods on a difficult 
classification problem, the classification of facial actions. Best performances were 
obtained with the Gabor and ICA representations, which both achieved 95.5% cor­
rect classification (see Table 1). The performance of these two methods equaled 
the agreement level of expert human subjects on these images (94%). Image repre­
sentations derived from the second-order statistics of the dataset (PCA and LFA) 
performed in the 80% accuracy range. An image representation derived from super­
vised learning on the second-order statistics (FLD) also did not significantly differ 
from PCA. We also obtained evidence that high spatial frequencies are important 
for classifying facial actions. Classification with the three highest frequencies of the 
Gabor representation (1/ = 0,1,2, cycles/face = 15,18,21 cycles/face) was 93% com­
pared to 84% with the three lowest frequencies (1/ = 2,3,4, cycles/face = 9,12,15). 

The two representations that significantly outperformed the others, Gabor and Inde­
pendent Components, employed local basis images, which supports recent findings 
that local basis images are important for face image analysis (14) (10) (12). The 
local property alone, however, does not account for the good performance of these 
two representations, as LFA performed no better than PCA on this classification 
task, nor did local implementations of PCA. 

In addition to spatial locality, the ICA representation and the Gabor filter repre­
sentation share the property of redundancy reduction, and have relationships to 
representations in the visual cortex. The response properties of primary visual cor­
tical cells are closely modeled by a bank of Gabor kernels. Relationships have been 
demonstrated between Gabor kernels and independent component analysis . Bell & 
Sejnowski (5) found using ICA that the kernels that produced independent outputs 
from natural scenes were spatially local, oriented edge kernels , similar to a bank of 
Gabor kernels. It has also been shown that Gabor filter outputs of natural images 
are at least pairwise independent (16). 

The Gabor wavelets and ICA each provide a way to represent face images as a linear 
superposition of basis functions. Gabor wavelets employ a set of pre-defined basis 
images, whereas ICA learns basis images that are adapted to the data ensemble. 
The Gabor wavelets are not specialized to the particular data ensemble, but would 
be advantageous when the amount of data is small. The ICA representation has the 
advantage of employing two orders of magnitude fewer basis images. This can be 
an advantage for classifiers that involve parameter estimation. In addition, the ICA 
representation takes 90% less CPU time than the Gabor representation to compute 
once the ICA weights are learned, which need only be done once. 

In summary, this comparison provided converging support for using local basis 
images, high spatial frequencies, and statistical independence for classifying facial 
actions. Best performances were obtained with Gabor wavelet decomposition and 
independent component analysis. These two representations employ gray level basis 
functions that share properties of spatial locality, independence, and have relation­
ships to the response properties of visual cortical neurons. 

An outstanding issue is whether our findings depend on the simple recognition 
engines we employed. Would a smarter recognition engine alter the relative per-
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formances? Our preliminary investigations suggest that is not the case. Hidden 
Markov models (HMM's) were trained on the PCA, ICA and Gabor representa­
tions. The Gabor representation was reduced to 75 dimensions using PCA before 
training the HMM. The HMM improved classification performance with ICA to 
96.3%, and it did not change the overall findings, as it gave similar percent im­
provements to the PCA and PCA-reduced Gabor representations over their nearest 
neighbor performances. The dimensionality reduction of the Gabor representation, 
however, caused its nearest neighbor performance to drop, and the performance 
with the HMM was 92.7%. The lower dimensionality of the ICA representation was 
an advantage when employing the HMM. 
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