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Abstract 

Recently, a number of authors have proposed treating dialogue systems as Markov 
decision processes (MDPs). However, the practical application ofMDP algorithms 
to dialogue systems faces a number of severe technical challenges. We have built a 
general software tool (RLDS, for Reinforcement Learning for Dialogue Systems) 
based on the MDP framework, and have applied it to dialogue corpora gathered 
from two dialogue systems built at AT&T Labs. Our experiments demonstrate that 
RLDS holds promise as a tool for "browsing" and understanding correlations in 
complex, temporally dependent dialogue corpora. 

1 Introduction 

Systems in which human users speak to a computer in order to achieve a goal are called 
spoken dialogue systems. Such systems are some of the few realized examples of open­
ended, real-time, goal-oriented interaction between humans and computers, and are therefore 
an important and exciting testbed for AI and machine learning research. Spoken dialogue 
systems typically integrate many components, such as a speech recognizer, a database back­
end (since often the goal of the user is to retrieve information), and a dialogue strategy. In 
this paper we are interested in the challenging problem of automatically inferring a good 
dialogue strategy from dialogue corpora. 

Research in dialogue strategy has been perhaps necessarily ad-hoc due to the open-ended 
nature of dialogue system design. For example, a common and critical design choice is be­
tween a system that always prompts the user to select an utterance from fixed menus (system 
initiative), and one that attempts to determine user intentions from unrestricted utterances 
(mixed initiative). Typically a system is built that explores a few alternative strategies, this 
system is tested, and conclusions are drawn regarding which of the tested strategies is best 
for that domain [4, 7, 2]. This is a time-consuming process, and it is difficult to rigorously 
compare and evaluate alternative systems in this fashion, much less design improved ones. 

Recently, a number of authors have proposed treating dialogue design in the formalism of 
Markov decision processes (MDPs)[ 1, 3, 7]. In this view, the popUlation of users defines the 
stochastic environment, a dialogue system's actions are its (speech-synthesized) utterances 
and database queries, and the state is represented by the entire dialogue so far. The goal is 
to design a dialogue system that takes actions so as to maximize some measure of reward. 
Viewed in this manner, it becomes possible, at least in principle, to apply the framework and 
algorithms of reinforcement learning (RL) to find a good dialogue strategy. 

However, the practical application of RL algorithms to dialogue systems faces a number of 
severe technical challenges. First, representing the dialogue state by the entire dialogue so 
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far is often neither feasible nor conceptually useful, and the so-called belief state approach 
is not possible, since we do not even know what features are required to represent the belief 
state. Second, there are many different choices for the reward function, even among systems 
providing very similar services to users. Previous work [7] has largely dealt with these issues 
by imposing a priori limitations on the features used to represent approximate state, and then 
exploring just one of the potential reward measures. 

In this paper, we further develop the MDP formalism for dialogue systems, in a way that does 
not solve the difficulties above (indeed, there is no simple "solution" to them), but allows us 
to attenuate and quantify them by permitting the investigation of different notions of approx­
imate state and reward. Using our expanded formalism, we give one of the first applications 
of RL algorithms to real data collected from multiple dialogue systems. We have built a gen­
eral software tool (RLDS, for Reinforcement Learning for Dialogue Systems) based on our 
framework, and applied it to dialogue corpora gathered from two dialogue systems built at 
AT&T Labs, the TOOT system for voice retrieval of train schedule information [4] and the 
ELVIS system for voice retrieval of electronic mail [7]. 

Our experiments demonstrate that RLDS holds promise not just as a tool for the end-to­
end automated synthesis of complicated dialogue systems from passive corpora - a "holy 
grail" that we fall far short of here1 - but more immediately, as a tool for "browsing" 
and understanding correlations in complex, temporally dependent dialogue corpora. Such 
correlations may lead to incremental but important improvements in existing systems. 

2 The TOOT and ELVIS Spoken Dialogue Systems 

The TOOT and ELVIS systems were implemented using a general-purpose platform devel­
oped at AT&T, combining a speaker-independent hidden Markov model speech recognizer, 
a text-to-speech synthesizer, a telephone interface, and modules for specifying data-access 
functions and dialogue strategies. In TOOT, the data source is the Amtrak train schedule web 
site, while in ELVIS, it is the electronic mail spool of the user. 

In a series of controlled experiments with human users, dialogue data was collected from 
both systems, resulting in 146 dialogues from TOOT and 227 dialogues from ELVIS. The 
TOOT experiments varied strategies for information presentation, confirmation (whether and 
how to confirm user utterances) and initiative (system vs. mixed), while the ELVIS experi­
ments varied strategies for information presentation, for summarizing email folders, and ini­
tiative. Each resulting dialogue consists of a series of system and user utterances augmented 
by observations derived from the user utterances and the internal state of the system. The 
system's utterances (actions) give requested information, ask for clarification, provide greet­
ings or instructions, and so on. The observations derived from the user's utterance include 
the speech-recognizer output, the corresponding log-likelihood score, the semantic labels as­
signed to the recognized utterances (such as the desired train departure and arrival cities in 
TOOT, or whether the user prefers to hear their email ordered by date or sender in ELVIS); 
indications of user barge-ins on system prompts; and many more. The observations derived 
from the internal state include the grammar used by the speech recognizer during the tum, 
and the results obtained from a query to the data source. In addition, each dialogue has an 
associated survey completed by the user that asks a variety of questions relating to the user's 
experience. See [4, 7] for details. 

3 Spoken Dialogue Systems and MDPs 

Given the preceding discussion, it is natural to formally view a dialogue as a sequence d 
d = (a 1, 01, rt), (a2' 02, r2), ... , (at, Ot, rt). 

--------------
1 However, in recent work we have applied the methodology described here to significantly improve 

the perfonnance of a new dialogue system [5]. 
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Here ai is the action taken by the system (typically a speech-synthesized utterance, and less 
frequently, a database query) to start the ith exchange (or tum, as we shall call it), OJ consists 
of all the observations logged by the system on this turn, as discussed in the last section, 
and rj is the reward received on this turn. As an example, in roOT a typical turn might 
indicate that the action aj was a system utterance requesting the departure city, and the 0; 
might indicate several observations: that the recognized utterance was "New York", that the 
log-likelihood of this recognition was -2.7, that there was another unrecognized utterance as 
well, and so on. We will use d[ i] to denote the prefix of d that ends following the ith turn, and 
d· (a, 0, r) to denote the one-turn extension of dialogue d by the turn (a, 0, r). The scope of 
the actions aj and observations 0; is determined by the implementation of the systems (e.g. 
if some quantity was not logged by the system, we will not have access to it in the 0; in the 
data). Our experimental results will use rewards derived from the user satisfaction surveys 
gathered for the roOT and ELVIS data 

We may view any dialogue d as a trajectory in a well-defined true MOP M. The states 2 

of M are all possible dialogues, and the actions are all the possible actions available to the 
spoken dialogue system (utterances and database queries). Now from any state (dialogue) d 
and action a, the only possible next states (dialogues) are the one-turn extensions d· (a, 0, r). 
The probability of transition from d to d·(a, 0, r) is exactly the probability, over the stochastic 
ensemble of users, that 0 and r would be generated following action a in dialogue d. 

It is in general impractical to work directly on M due to the unlimited size of the state (di­
alogue) space. Furthermore, M is not known in advance and would have to be estimated 
from dialogue corpora. We would thus like to permit a flexible notion of approximate states. 
We define state estimator SE to be a mapping from any dialogue d into some space S. For 
example, a simple state estimator for roOT might represent the dialogue state with boolean 
variables indicating whether certain pieces of information had yet been obtained from the 
user (departure and arrival cities, and so on), and a continuous variable tracking the average 
log-likelihood of the recognized utterances so far. Then sE(d) would be a vector represent­
ing these quantities for the dialogue d. Once we have chosen a state estimator SE, we can 
transform the dialogue d into an S-trajectory, starting from the initial empty state So E S: 

So -tal SE(d[l]) -ta2 sE(d[2]) -ta3 . .. -tat SE(d[t]) 

where the notation -tao SE(d[i]) indicates a transition to SE(d[i]) E S following action 
aj. Given a set of dialogues d1, .. . , dn , we can construct the empirical MOP MSE • The state 
space of MSE is S, the actions are the same as in M, and the probability oftransition from s to 
s' under action a is exactly the empirical probability of such a transition in the S-trajectories 
obtained from d1 , .•• ,dn . Note that we can build MSE from dialogue corpora, solve for its 
optimal policy, and analyze the resulting value function. 

The point is that by choosing SE carefully, we hope that the empirical MOP MSE will be a 
good approximation of M. By this we mean that MSE renders dialogues (approximately) 
Markovian: the probability in M of transition from any dialogue d to anyone-turn extension 
d · (a, 0, r) is (approximately) the probability of transition from sE(d) to sE(d · (a, 0, r)) in 
MSE • We hope to find state estimators SE which render dialogues approximately Markovian, 
but for which the amount of data and computation required to find good policies in MSE will 
be greatly reduced compared to working directly in dialogue space. 

While conceptually appealing, this approach is subject to at least three important caveats: 
First, the approach is theoretically justified only to the extent that the chosen state estima­
tor renders dialogues Markovian. In practice, we hope that the approach is robust, in that 
"small" violations of the Markov property will still produce useful results. Second, while 

2These are not to be confused with the internal states of the spoken dialogue system(s) during the 
dialogue, which in our view merely contribute observations. 
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state estimators violating the Markov property may lead to meaningful insights, they can­
not be directly compared. For instance, if the optimal value function derived from one state 
estimator is larger than the optimal value function for another state estimator, we cannot nec­
essarily conclude that the first is better than the second. (This can be demonstrated formally.) 
Third, even with a Markovian state estimator SE, data that is sparse with respect to SE limits 
the conclusions we can draw; in a large space S, certain states may be so infrequently visited 
in the dialogue corpora that we can say nothing about the optimal policy or value function 
there. 

4 The RLDS System 

We have implemented a software tool (written in C) called RLOS that realizes the above 
formalism. RLOS users specify an input file of sample dialogues; the dialogues include the 
rewards received at each turn. Users also specify input files defining S and a state estimator 
SEe The system has command-line options that specify the discount factor to be used, and 
a lower bound on the number of times a state s E S must be visited in order for it to be 
included in the empirical MOP USE (to control overfitting to sparse data). Given these inputs 
and options, RLOS converts the dialogues into S -trajectories, as discussed above. It then 
uses these trajectories to compute the empirical MOP USE specified by the data - that is, 
the data is used to compute next-state distributions and average reward in the obvious way. 
States with too few visits are pruned from USE' RLOS then uses the standard value iteration 
algorithm to compute the optimal policy and value function [6] for USE, all using the chosen 
discount factor. 

5 Experimental Results 

The goal of the experiments reported below is twofold: first, to confirm that our RLOS 
methodology and software produce intuitively sensible policies; and second, to use the value 
functions computed by the RLOS software to discover and understand correlations between 
dialogue properties and performance. We have space to present only a few of our many 
experiments on TOOT and ELVIS data. 

Each experiment reported below involves choosing a state estimator, running RLOS using 
either the TOOT or ELVIS data, and then analyzing the resulting policy and value function. 
For the TOOT experiments, the reward function was obtained from a question in the user 
satisfaction survey: the last turn in a dialogue receives a reward of +1 if the user indicated 
that they would use the system again, a reward of 0 if the user answered "maybe", and a 
reward of -1 if the user indicated that they would not use the system again . All turns other 
than the last receive reward 0 (Le., a reward is received only at the end of a dialogue). For 
the ELVIS experiments, we used a summed (over several questions) user-satisfaction score 
to reward the last turn in each dialogue (this score ranges between 8 and 40). 

Experiment 1 (A Sensible Policy): In this initial "sanity check" experiment, we created a 
state estimator for TOOT whose boolean state variables track whether the system knows the 
value for the following five informational attributes: arrival city (denoted AC), departure city 
(DC), departure date (~O), departure hour (OH), and whether the hour is AM or PM (AP) 3 . 

Thus, if the dialogue so far includes a turn in which TOOT prompts the user for their depar­
ture city, and the speech recognizer matches the user utterance with "New York", the boolean 
state variable GotOC? would be assigned a value of 1. Note that this ignores the actual values 
of the attributes. In addition, there is another boolean variable called ConfirmedAll? that is 
set to 1 if and only ifthe system took action ConfirmAll (which prompts the user to explicitly 
verify the attribute values perceived by TOOT) and perceived a "yes" utterance in response. 
Thus. the state vector js sjmply the binary vector 

3Remember that TOOT can only track its perceptions of these attributes, since errors may have 
occurred in speech recognition. 
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[ GotAC? , GotAP? , GotDC? , GotDD? , GotDH? , ConfirmedAll? ) 

Among the actions (the system utterances) available to TOOT are prompts to the user to 
specify values for these informational attributes; we shall denote these actions with labels 
AskOC, AskAC, AskOO, AskOH, and AskAP. The system takes several other actions that 
we shall mention as they arise in our results. 

The result of running RLOS was the following policy, where we have indicated the action to 
be taken from each state: 
[0,0,0,0,0,0): SayGreeting [1,0,0,0,0,0) : AskDC [1,0,1,0,0,0): AskAp 
[1,0,1,1,0,0): AskDH [0,0,0,1,1,0): AskAP [1,0,0,1,1,0): AskAP 
[0, 1, 0, 1, 1, 0): AskAll [1, 1 , 0, 1 , 1, 0): AskAll [ 1, 0, 1, 1, 1, 0): AskAP 
[1,1,1,1,1,0): ConfirmAll [1,1,1,1,1,1): Close 

Thus, RLOS finds a sensible policy, always asking the user for information which it has not 
already received, confirming the user's choices when it has all the necessary information, and 
then presenting the closest matching train schedule and closing the dialogue (action Close). 
Note that in some cases it chooses to ask the user for values for all the informational attributes 
even though it has values for some of them. It is important to emphasize that this policy was 
derived purely through the application of RLOS to the dialogue data, without any knowledge 
of the "goal" of the system. Furthermore, the TOOT data is such that the empirical MOP 
built by RLOS for this state estimator does include actions considerably less reasonable than 
those chosen above from many states. Examples include confirming the values of specific 
informational attributes such as DC (since we do not represent whether such confirmations 
were successful, this action would lead to infinite loops of confirmation), and requesting 
values for informational attributes for which we already have values (such actions appear 
in the empirical MOP due to speech recognition errors). The mere fact that RLOS was 
driven to a sensible policy that avoided these available pitfalls indicates a correlation between 
the chosen reward measure (whether the user would use the system again) and the intuitive 
system goal of obtaining a completely specified train trip. It is interesting to note that RLOS 
finds it better to confirm values for all 5 attributes when it has them, as opposed to simply 
closing the dialogue without confirmation. 

In a similar experiment on ELVIS, RLOS again found a sensible policy that summarizes the 
user's inbox at the beginning of the dialogue, goes on to read the relevant e-mail messages 
until done, and then closes. 
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Figure I: a) Role of Confirmation. b) Role of Distress Features (indicators that the dialogue is in 
trouble). See description of Experiments 2 and 3 respectively in the text for details. 

Experiment 2 (Role of Confirmation): Here we explore the effect of confirming with the 
user the values that TOOT perceives for the informational attributes - that is, whether the 
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trade-off between the increased confidence in the utterance and the potential annoyance to 
the user balances out in favor of confirmation or not (for the particular reward function we 
are using). To do so, we created a simple state estimator with just two state variables. The 
first variable counts the number of the informational attributes (DC, AC, etc.) that roar 
believes it has obtained, while the second variable counts the number of these that have been 
confirmed with the user. Figure 1 (a) presents the optimal value as a function of the number of 
attributes confirmed. Each curve in the plot corresponds to a different setting of the first state 
variable. For instance, the curve labeled with "1=3" corresponds to the states where the sys­
tem has obtained 3 informational attributes. We can make two interesting observations from 
this figure. First, the value function grows roughly linearly with the number of confirmed 
attributes. Second, and perhaps more startlingly, the value function has only a weak depen­
dence on the first feature - the value for states when some number of attributes have been 
confirmed seems independent of how many attributes (the system believes) have been ob­
tained. This is evident from the lack of separation between the plots for varying values of the 
state variable I. In other words, our simple (and preliminary) analysis suggests that for our 
reward measure, confirmed information influences the value function much more strongly 
than unconfirmed information. We also repeated this experiment replacing attribute confir­
mation with thresholded speech recognition log-likelihood scores, and obtained qualitatively 
similar results. 

Experiment 3 (Role of Distress Features): Dialogues often contain timeouts (user silence 
when system expected response), resets (user asks for current context of dialogue to be aban­
doned and the system is reinitialized), user requests for help, and other indicators that the 
dialogue is potentially in trouble. Do such events correlate with low value? We created a 
state estimator for roar that, in addition to our variable I counting informational attributes, 
counted the number of such distress events in the dialogue. Figure l(b) presents the optimal 
value as a function of the number of attributes obtained. Each curve corresponds to a differ­
ent number of distress features. This figure confirms that the value of the dialogue is lower 
for states with a higher number of distress features. 
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Figure 2: a) Role of Dialogue Length in roar. b) Role of Dialogue Length in ELVIS. See description 
of Experiment 4 in the text for details. 

Experiment 4 (Role of the Dialogue Length): All other things being equal (e.g. extent of 
task completion), do users prefer shorter dialogues? To examine this question, we created a 
state estimator for TOOT that counts the number of informational attributes obtained (vari­
able I as in Experiment 2), and a state estimator for ELVIS that measures "task progress" 
(a measure analogous to the variable I for roar; details omitted). In both cases, a second 
variable tracks the length of the dialogue. 
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Figure 2(a) presents the results for TOOT. It plots the optimal value as a function of the 
number I of informational values; each curve corresponds to a different range of dialogue 
lengths. It is immediately apparent that the longer the dialogue, the lower the value, and 
that within the same length of dialogue it is better to have obtained more attributes 4. Of 
course, the effect of obtaining more attributes is weak for the longest dialogue length; these 
are dialogues in which the user is struggling with the system, usually due to multiple speech 
recognition errors. 

Figure 2(b) presents the results for ELVIS from a different perspective. The dialogue length 
is now the x-axis, while each curve corresponds to a different value of P (task progress). It is 
immediately apparent that the value increases with task progress. More interestingly, unlike 
TOOT, there seems to be an "optimal" or appropriate dialogue length for each level of task 
progress, as seen in the inverse U-shaped curves. 

Experiment 5 (Role of Initiative): One ofthe important questions in dialogue theory is how 
to choose between system and mixed initiative strategies (cf. Section 1). Using our approach 
on both TOOT and ELVIS data, we were able to confirm previous results [4, 7] showing that 
system initiative has a higher value than mixed initiative. 

Experiment 6 (Role of Reward Functions): To test the robustness of our framework, we 
repeated Experiments 1-4 for TOOT using a new reward function based on the user's per­
ceived task completion. We found that except for a weaker correlation between number of 
turns and value function, the results were basically the same across the two reward functions. 

6 Conclusion 

This paper presents a new RL-based framework for spoken dialogue systems. Using our 
framework, we developed RLDS, a general-purpose software tool, and used it for empirical 
studies on two sets of real dialogues gathered from the TOOT and ELVIS systems. Our 
results showed that RLDS was able to find sensible policies, that in ELVIS there was an 
"optimal" length of dialogue, that in TOOT confirmation of attributes was highly correlated 
with value, that system initiative led to greater user satisfaction than mixed initiative, and 
that the results were robust to changes in the reward function. 
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