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Abstract 

We formulate a model for probability distributions on image spaces. We 
show that any distribution of images can be factored exactly into condi­
tional distributions of feature vectors at one resolution (pyramid level) 
conditioned on the image information at lower resolutions. We would 
like to factor this over positions in the pyramid levels to make it tractable, 
but such factoring may miss long-range dependencies. To fix this, we in­
troduce hidden class labels at each pixel in the pyramid. The result is 
a hierarchical mixture of conditional probabilities, similar to a hidden 
Markov model on a tree. The model parameters can be found with max­
imum likelihood estimation using the EM algorithm. We have obtained 
encouraging preliminary results on the problems of detecting various ob­
jects in SAR images and target recognition in optical aerial images. 

1 Introduction 

Many approaches to object recognition in images estimate Pr(class I image). By con­
trast, a model of the probability distribution of images, Pr(image), has many attrac­
tive features. We could use this for object recognition in the usual way by training 
a distribution for each object class and using Bayes' rule to get Pr(class I image) = 
Pr(image I class) Pr(class)J Pr{image). Clearly there are many other benefits of having a 
model of the distribution of images, since any kind of data analysis task can be approached 
using knowledge of the distribution of the data. For classification we could attempt 'to de­
tect unusual examples and reject them, rather than trusting the classifier's output. We could 
also compress, interpolate, suppress noise, extend resolution, fuse multiple images, etc. 

Many image analysis algorithms use probability concepts, but few treat the distribution of 
images. Zhu, Wu and Mumford [9] do this by computing the maximum entropy distribution 
given a set of statistics for some features, This seems to work well for textures but it is not 
clear how well it will model the appearance of more structured objects. 

There are several algorithms for modeling the distributions of features extracted from the 
image, instead of the image itself. The Markov Random Field (MRF) models are an ex­
ample of this line of development; see, e.g., [5, 4]. Unfortunately they tend to be very 
expensive computationally. 

In De Bonet and Viola's flexible histogram approach [2, 1], features are extracted at mul­
tiple image scales, and the resulting feature vectors are treated as a set of independent 
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samples drawn from a distribution. They then model this distribution of feature vectors 
with Parzen windows. This has given good results, but the feature vectors from neighbor­
ing pixels are treated as independent when in fact they share exactly the same components 
from lower-resolutions. To fix this we might want to build a model in which the features at 
one pixel of one pyramid level condition the features at each of several child pixels at the 
next higher-resolution pyramid level. The multi scale stochastic process (MSP) methods do 
exactly that. Luettgen and Willsky [7], for example, applied a scale-space auto-regression 
(AR) model to texture discrimination. They use a quadtree or quadtree-like organization 
of the pixels in an image pyramid, and model the features in the pyramid as a stochastic 
process from coarse-to-fine levels along the tree. The variables in the process are hidden, 
and the observations are sums of these hidden variables plus noise. The Gaussian distribu­
tions are a limitation of MSP models. The result is also a model of the probability of the 
observations on the tree, not of the image. 

All of these methods seem well-suited for modeling texture, but it is unclear how we might 
build the models to capture the appearance of more structured objects. We will argue below 
that the presence of objects in images can make local conditioning like that of the flexible 
histogram and MSP approaches inappropriate. In the following we present a model for 
probability distributions of images, in which we try to move beyond texture modeling. 
This hierarchical image probability (HIP) model is similar to a hidden Markov model on 
a tree, and can be learned with the EM algorithm. In preliminary tests of the model on 
classification tasks the performance was comparable to that of other algorithms. 

2 Coarse-to-fine factoring of image distributions 

Our goal will be to write the image distribution in a form similar to Pr(I) "-' 
Pr(Fo I Fd Pr(Fl I F 2) ... , where FI is the set of feature images at pyramid levell. We 
expect that the short-range dependencies can be captured by the model's distribution of 
individual feature vectors, while the long-range dependencies can be captured somehow at 
low resolution. The large-scale structures affect finer scales by the conditioning. 

In fact we can prove that a coarse-to-fine factoring like this is correct. From an image I 
we build a Gaussian pyramid (repeatedly blur-and-subsample, with a Gaussian filter). Call 
the l-th level II, e.g., the original image is 10 (Figure 1). From each Gaussian level II we 
extract some set of feature images Fl. Sub-sample these to get feature images GI. Note 
that the images in GI have the same dimensions as 11+1 . We denote by G I the set of images 
containing 11+1 and the images in G I. We further denote the mapping from II to GI by gl. 

Suppose now that go : 10 t-+ Go is invertible. Then we can think of go as a change of vari-
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abIes. If we have a distribution on a space, its expressions in two different coordinate sys­
tems are related by multiplying by the Jacobian. In this case we get Pr( 10 ) = Igo I Pr( Go). 
Since Go = (Go , II), we can factor Pr(Go) to get Pr(Io) = Igol Pr(Go I h) Pr(h). If 
gl is invertible for alll E {O, . .. , L - 1} then we can simply repeat this change of variable 
and factoring procedure to get 

Pr(I) = [rflgdPr(GIIII+d] Pr(h) 
1=0 

(1) 

This is a very general result, valid for all Pr(I), no doubt with some rather mild restrictions 
to make the change of variables valid. The restriction that gl be invertible is strong, but 
many such feature sets are known to exist, e.g., most wavelet transforms on images. We 
know of a few ways that this condition can be relaxed, but further work is needed here. 

3 The need for hidden variables 

For the sake of tractability we want to factor Pr(GI 111+1 ) over positions, something like 
Pr(I) ,.... ITI ITxEI,+l Pr(gl(x) I fl+! (x)) where gl(x) and fl+! (x) are the feature vectors 
at position x. The dependence of gl on fi+l expresses the persistence of image structures 
across scale, e.g., an edge is usually detectable as such in several neighboring pyramid 
levels. The flexible histogram and MSP methods share this structure. While it may be 
plausible that fl+1 (x) has a strong influence on gl (x), we argue now that this factorization 
and conditioning is not enough to capture some properties of real images. 

Objects in the world cause correlations and non-local dependencies in images. For exam­
ple, the presence of a particular object might cause a certain kind of texture to be visible 
at levell. Usually local features fi+l by themselves will not contain enough information 
to infer the object's presence, but the entire image II+! at that layer might. Thus gl(x) is 
influenced by more of 11+1 than the local feature vector. 

Similarly, objects create long-range dependencies. For example, an object class might 
result in a kind of texture across a large area of the image. If an object of this class is always 
present, the distribution may factor, but if such objects aren't always present and can't 
be inferred from lower-resolution information, the presence of the texture at one location 
affects the probability of its presence elsewhere. 

We introduce hidden variables to represent the non-local information that is not captured by 
local features. They should also constrain the variability of features at the next finer scale. 
Denoting them collectively by A, we assume that conditioning on A allows the distributions 
over feature vectors to factor. In general, the distribution over images becomes 

Pr(I) ()( L {IT II Pr(gl(x) I fi+l (x) , A) Pr(A I h)} Pr(h) . (2) 
A 1=0 xEI,+l 

As written this is absolutely general, so we need to be more specific. In particular we would 
like to preserve the conditioning of higher-resolution information on coarser-resolution 
information, and the ability to factor over positions. 
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Figure 2: Tree structure of the conditional dependency between hidden variables in the HIP 
model. With subsampling by two, this is sometimes called a quadtree structure. 

As a first model we have chosen the following structure for our HIP model: 1 

Pr(I)<x L IT II [pr(gl(X) \f1+1(x),al(X)) Pr(al(x) \a1+1(X))]. (3) 
Ao, .. . ,AL_1l=O xE11+l 

To each position x at each level l we attach a hidden discrete index or label al (x). The 
resulting label image Al for levell has the same dimensions as the images in G1• 

Since al(x) codes non-local information we can think of the labels Al as a segmentation 
or classification at the l-th pyramid level. By conditioning al(x) on al+l (x), we mean 
that al(x) is conditioned on al+1 at the parent pixel of x. This parent-child relationship 
follows from the sub-sampling operation. For example, if we sub-sample by two in each 
direction to get G1 from Fl, we condition the variable al at (x, y) in level l on al+l at 
location (Lx /2 J , Ly /2 J) in levell + 1 (Figure 2). This gives the dependency graph of the 
hidden variables a tree structure. Such a probabilistic tree of discrete variables is sometimes 
referred to as a belief network. By conditioning child labels on their parents information 
propagates though the layers to other areas of the image while accumulating information 
along the way. 

For the sake of simplicity we've chosen Pr(gl I fl+1 ,al) to be normal with mean (kal + 
Mal fl+ 1 and covariance ~al. We also constrain Mal and ~al to be diagonal. 

4 EM algorithm 

Thanks to the tree structure, the belief network for the hidden variables is relatively easy to 
train with an EM algorithm. The expectation step (summing over ai's) can be performed 
directly. If we had chosen a more densely-connected structure with each child having 
several parents, we would need either an approximate algorithm or Monte Carlo techniques. 
The expectation is weighted by the probability of a label or a parent-child pair of labels 
given the image. This can be computed in a fine-to-coarse-to-fine procedure, i.e. working 
from leaves to the root and then back out to the leaves. The method is based on belief 
propagation [6]. With some care an efficient algorithm can be worked out, but we omit the 
details due to space constraints. 

Once we can compute the expectations, the normal distribution makes the M-step tractable; 
we simply compute the updated gal' ~al' Mal' and Pr(al I al+d as combinations of various 
expectation values. 

I The proportionality factor includes Pr(AL , h) which we model as 
I1x Pr(gdX) I adx)) Pr(adx)). This is the I = L factor of Equation 3, which should be 
read as having no quantities fL +1 or aL+l. 
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Figure 3: Examples of aircraft ROls. On the right are A z values from a jack-knife study of 
detection performance of HIP and HPNN models. 

Figure 4: SAR images of three types of vehicles to be detected. 

5 Experiments 

We applied HIP to the problem of detecting aircraft in an aerial photograph of Logan air­
port. A simple template-matching algorithm was used to select forty candidate aircraft, 
twenty of which were false positives (Figure 3). Ten of the plane examples were used for 
training one HIP model and ten negative examples were used to train another. Because 
of thesmall number of examples, we performed a jack-knife study with ten random splits 
of the data. For features we used filter kernels that were polynomials of up to third order 
multiplying Gaussians. The HIP pyramid used subsampling by three in each direction. The 
test set ROC area for HIP had a mean of Az = 0.94, while our HPNN algorithm [8] gave a 
mean Az of 0.65. The individual values shown in Figure 3. (We compared with the HPNN 
because it had given Az = 0.86 on a larger set of aircraft images including these with a 
different set of features and subsampling by two.) 

We also performed an experiment with the three target classes in the MSTAR public targets 
data set, to compare with the results of the flexible histogram approach of De Bonet, et al 
[lJ . We trained three HIP models, one for each of the target vehicles BMP-2, BTR-70 and 
T-72 (Figure 4). As in [1J we trained each model on ten images of its class, one image for 
each of ten aspect angles, spaced approximately 36° apart. We trained one model for all 
ten images of a target, whereas De Bonet et al trained one model per image. 

We first tried discriminating between vehicles of one class and other objects by thresholding 
log Pr(I I class), i.e., no model of other objects is used. For the tests, the other objects were 
taken from the test data for the two other vehicle classes, plus seven other vehicle classes. 
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Figure 5: ROC curves for vehicle detection in SAR imagery. (a) ROC curves by thresh­
olding HIP likelihood of desired class. (b) ROC curves for inter-class discrimination using 
ratios of likelihoods as given by HIP models. 

There were 1,838 image from these seven other classes, 391 BMP2 test images, 196 BTR70 
test images, and 386 Tn test images. The resulting ROC curves are shown in Figure 5a. 

We then tried discriminating between pairs target classes using HIP model likelihood ratios, 
i.e., log Pr(I I classl) - log Pr(I I class2) . Here we could not use the extra seven vehicle 
classes. The resulting ROC curves are shown in Figure 5b. The performance is comparable 
to that of the flexible histogram approach. 

6 Conditional distributions of features 

To further test the HIP model's fit to the image distribution, we computed several distri­
butions of features 9i(X) conditioned on the parent feature Ii+! (x).2 The empirical and 
computed distributions for a particular parent-child pair of features are shown in Figure 6. 
The conditional distributions we examined all had similar appearance, and all fit the empir­
ical distributions well. Buccigrossi and Simoncelli [3] have reported such "bow-tie" shape 
conditional distributions for a variety of features. We want to point out that such condi­
tional distributions are naturally obtained for any mixture of Gaussian distributions with 
varying scales and zero means. The present HIP model learns such conditionals, in effect 
describing the features as non-stationary Gaussian variables. 

7 Conclusion 

We have developed a class of image probability models we call hierarchical image proba­
bility or HIP models. To justify these, we showed that image distributions can be exactly 
represented as products over pyramid levels of distributions of sub-sampled feature im­
ages conditioned on coarser-scale image information. We argued that hidden variables are 
needed to capture long-range dependencies while allowing us to further factor the distri­
butions over position. In our current model the hidden variables act as indices of mixture 

2This is somewhat involved; Pr(gl I /l+d is not just Pr(gl I /1+1 , al) Pr(al) summed over aI, but 
Lal Pr(gl, all /l+d = Lal Pr(gl 1/1+1, al) Pr(all /l+t} . 
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Figure 6: Empirical and HIP estimates of the distribution of a feature 91 (X) conditioned on 
its parent feature 11+1 (x). 

components. The resulting model is somewhat like a hidden Markov model on a tree. Our 
early results on classification problems showed good performance. 
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