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Abstract

We examine a psychophysical law that describes the influence of
stimulus and context on perception. According to this law choice
probability ratios factorize into components independently con-
trolled by stimulus and context. It has been argued that this pat-
tern of results is incompatible with feedback models of perception.
In this paper we examine this claim using neural network models
defined via stochastic differential equations. We show that the law
is related to a condition named channel separability and has little
to do with the existence of feedback connections. In essence, chan-
nels are separable if they converge into the response units without
direct lateral connections to other channels and if their sensors are
not directly contaminated by external inputs to the other chan-
nels. Implications of the analysis for cognitive and computational
neurosicence are discussed.

1 Introduction

We examine a psychophysical law, named the Morton-Massaro law, and its implica-
tions to connectionist models of perception and neural information processing. For
an example of the type of experiments covered by the Morton-Massaro law consider
an experiment by Massaro and Cohen (1983) in which subjects had to identify syn-
thetic consonant sounds presented in the context of other phonemes. There were
two response alternatives, seven stimulus conditions, and four context conditions.
The response alternatives were /1/ and /r/, the stimuli were synthetic sounds gen-
erated by varying the onset frequency of the third formant, followed by the vowel
/i/. Each of the 7 stimuli was placed after each of four different context consonants,
/v/, [s/, [p/,and /t/. Morton (1969) and Massaro independently showed that in a
remarkable range of experiments of this type, the influence of stimulus and context
on response probabilities can be accounted for with a factorized version of Luce’s
strength model (Luce, 1959)
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Here S, C and R are random variables representing the stimulus, context and the
subject’s response, S, C and R are the set of stimulus, context and response al-
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ternatives, ns(i,k) > 0 represents the support of stimulus ¢ for response k, and
n¢c(7, k) > 0 the support of context j for response k. Assuming no strength param-
eter is exactly zero, (1) is equivalent to

P(R=k|S=1,C=3) _'(ns(,k)\ (ncG,k)) ¢ 0
P(R=1]5=iC=j) (ns(i,z)) (ncu,z))‘f *‘"("’”’“)ES"C"Z)

This says that response probability ratios factorize into two components, one which
is affected by the stimulus but unaffected by the context and one affected by the
context but unaffected by the stimulus.

2 Diffusion Models of Perception

Massaro (1989) conjectured that the Morton-Massaro law may be incompatible
with feedback models of perception. This conjecture was based on the idea that in
networks with feedback connections the stimulus can have an effect on the context
units and the context can have an effect on the stimulus units making it impossible
to factorize the influence of information sources. In this paper we analyze such
a conjecture and show that, surprisingly, the Morton-Massaro law has little to do
with the existence of feedback and lateral connections. We ground our analysis
on continuous stochastic versions of recurrent neural networks !. We call these
models diffusion (neural) networks for they are stochastic diffusion processes defined
by adding Brownian motion to the standard recurrent neural network dynamics.
Diffusion networks are defined by the following stochastic differential equation

dY;(t) = pi(Y(t),X) dt + 0 dB;(t) forie€ {1,---,n}, (3)

where Y;(t) is a random variable representing the internal potential at time ¢ of the
ith unit, Y (t) = (Ya(t), -+ ,Ya(t))’, X represents the external input, which consists
of stimulus and context, and B; is Brownian motion, which acts as a stochastic
driving term. The constant ¢ > 0, known as the dispersion, controls the amount
of noise injected onto each unit. The function p;, known as the drift, determines
the average instantaneous change of activation and is borrowed from the standard
recurrent neural network literature: this change is modulated by a matrix w of
connections between units, and a matrix v that controls the influence of the external
inputs onto each unit.

ni(Yi(t), X) = (Yi(t) - Yi(¢)), foralli€ {1,--+,n}, (4)

1
ri(Yi(?)
where 1/k; is a positive function, named the capacitance, controlling the speed of
processing and

Yi(t) =) wij Zi(t) + ) _vixXx, forallie{1,---,n}, (5)
3 k

Zi(t) = @i(Y;(1) = p(as Y(t)) = 1/(1 + e 1), (6)

Here w; ;, an element of the connection matrix w, is the weight from unit j to unit 4,
v;,k is an element of the matrix v,  is the logistic activation function and the a; > 0
terms are gain parameters, that control the sharpness of the activation functions.
For large values of a; the activation function of unit ¢ converges to a step function.
The variable Z;(t) represents a short-time mean firing rate (the activation) of unit

'For an analysis grounded on discrete time networks with binary states see McClelland
(1991).
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j scaled in the (0,1) range. Intuition for equation (4) can be achieved by thinking
of it as a the limit of a discrete time difference equation, in such case

Y (t + At) = Yi(t) + pi(Yi(t), X)At + oV AEN;(t), (7)

where the N;(t) are independent standard Gaussian random variables. For a fixed
state at time ¢ there are two forces controlling the change in activation: the drift,
which is deterministic, and the dispersion which is stochastic. This results in a
distribution of states at time ¢ + Af. As At goes to zero, the solution to the
difference equation (7) converges to the diffusion process defined in (4). In this
paper we focus on the behavior of diffusion networks at stochastic equilibrium, i.e.,
we assume the network is given enough time to approximate stochastic equilibrium
before its response is sampled.

3 Channel Separability

In this section we show that the Morton-Massaro is related to an architectural con-
straint named channel separability, which has nothing to do with the existence of
feedback connections. In order to define channel separability it is useful to char-
acterize the function of different units using the following categories: 1) Response
specification units: A unit is a response specification unit, if, when the state of all
the other units in the network is fixed, changing the state of this unit affects the
probability distribution of overt responses. 2) Stimulus units: A unit belongs to
the stimulus channel if : a) it is not a response unit, and b) when the state of the
response units is fixed, the probability distribution of the activations of this unit is
affected by the stimulus. 3) Contezt units: A unit belongs to the context channel if:
a) it is not a response unit, and b) when the states of the response units are fixed,
the probability distribution of the activations of this unit can be affected by the
context. Given the above definitions, we say that a network has separable stimulus
and contert channels if the stimulus and context units are disjoint: no unit simul-
taneously belongs to the stimulus and context channels. In essence, channels are
structurally separable if they converge into the response units without direct lateral
connections to other channels and if their sensors are not directly contaminated by
external inputs to the other channels (see Figure 1).

In the rest of the paper we show that if a diffusion network is structurally separable
the Morton-Massaro law can be approximated with arbitrary precision regardless of
the existence of feedback connections. For simplicity we examine the case in which
the weight matrix is symmetric. In such case, each state has an associated goodness
function that greatly simplifies the analysis. In a later section we discuss how the
results generalize to the non-symmetric case.

Let y € R™ represent the internal potential of a diffusion network. Let z; = p(a;y;)
for 2 = 1,--- ,n represent the firing rates corresponding to y. Let 2°, 2 and
z" represent the components of z for the units in the stimulus channel, context
channel and response specification module. Let z be a vector representing an input
and let z°, z° be the components of z for the external stimulus and context. Let
a = (ai, - ,an) be a fixed gain vector and Z<(t) a random vector representing
the firing rates at time ¢ of a network with gain vector a. Let Z¢ = lim;_,00 Z%(1),
represent the firing rates at stochastic equilibrium. In Movellan (1998) it is shown
that if the weights are symmetric i.e., w = w’ and 1/k;(z) = dy;(z)/dz then the
equilibrium probability density of Z¢ is as follows

pzex(2°,2°% 2" | 2°,2°) = exp((2/0?) Ga(2*,2" | 25,2c)) ,  (8)

1
Ko(zs, zc)
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Input

Figure 1: A network with separable context and stimulus processing channels. The
stimulus sensor and stimulus relay units make up the stimulus channel units, and
the context sensor and context channel units make up the context channel units.
Note that any of the modules can be empty except the response module.

where
Ka(@2) = [ exp((2/0%) Galz|24,20)) d, (9)
Galz| %) = H(z| 2) = Y Sa(2s), (10)
i=1
H(z|z) =2 wz/2+ 2 vz, (11)

Sau(2) = 0 (1og(zi) +log(1 - z,-)) o (z.- log(zs) + (1 — z:) log(1 — )) (12)

Without loss of generality hereafter we set 02 = 2. When there are no direct con-
nections between the stimulus and context units there are no terms in the goodness
function in which z° or 2° occur jointly with z¢ or 2°. Because of this, the goodness
can be separated into three additive terms, that depend on z*®, 2° and a third term
which depends on the response units:

Ga(2*,2527 | 2°,2°) = Go (2% 27 | 2°) + G5 (27, 2°| 2°) + GL.(2") , (13)

where
Gi(2°,2" | 2°) = (2°) ws,s2° /2 + (2°) We,r 2" + (2°) 5,67° + (27) 0y, s7° — Z S(zf),
9
G& (227 | 2°) = (2°) We,e2%/2 + (2°) we,r2” + (2) ve,c2° + (27)'vr,c2° — ) S(25),
(15)
Go(2") = (&) wrr2" /2= ) S(2]) .- (16)
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where w, , is a submatrix of w connecting the stimulus and response units. Similar
notation is used for the other submatrices of w and v. It follows that we can write
the ratio of the joint probability density‘ of two states z and Z as follows:

Pz, x(2°,2°,2" | 2°,2°)  exp(G4(2®,2" | z,) + G5(2°, 27 | 2°) + G5 (2"))
pZa|X(zs: 20’21' | z?, xc) exP(G:r(z,! zr | ms) + G&(zc,zr | zc) + Gg(z"))

which factorizes as desired. To get probability densities for the response units, we
integrate over the states of all the other units

pzrx (2" | 2%,2°) = //pza|x(z’,z°,z" | %, 2°) dz® dz°, (18)

and after rearranging terms

(17)

1
pzyx (2" | 2°,2%) = Ko(z®,29) (/exp( Gz(2*,2" | 2°) + Gr(2")) dz’)

(/ exp( G¢(2%,2" | z°)) dz"'),

which also factorizes. All is left is mapping continuous states of the response units
to discrete external responses. To do so we partition the space of the response
specification units into discrete regions. The probability of a response becomes the
integral of the probability density over the region corresponding to that response.
The problem is that the integral of probability densities does not necessarily fac-
torize even though the densities factorize at every point.

(19)

Fortunately there are two important cases for which the law holds, at least as a
good approximation. The first case is when the response regions are small and thus
we can approximate the integral over that region by the density at a point times the
volume of the region. In such a case the ratio of the integrals can be approximated
by the ratio of the probability densities of those individual states. The second case
applies to models, like McClelland and Rumelhart’s (1981) interactive activation
model, in which each response is associated with a distinct response unit. These
models typically have negative connections amongst the response units so that at
equilibrium one unit tends to be active while the others are inactive. In such a
case a common response policy picks the response corresponding to the active unit.
We now show that such a policy can approximate the Morton-Massaro law to an
arbitrary level of precision as the gain parameter of the response units is increased.
Let z represent the joint state of a network and let the first r components of z
be the states of the response specification units. Let z(!) = (1,0,0,---,0), 2(?) =

(0,1,0,---,0)" be two r-dimensional vectors representing states of the response
speciﬁcation units. For i € {1,2} and A € (0,1) let
29 = (1-29A + (z9)(1 - A), (20)

RY ={zeR :z5e(1-2)z A+ (1-2)), forj=1,---,r}. (21)

The sets Rg) and Rg) are regions of the [0,1]" space mapping into two distinct
external responses. We now investigate the convergence of the probability ratio of
these two responses as we let A — 0, i.e., as the response regions collapse into
corners of [0,1]".

P(Zr € R(2) | X =z) fR(z) Pz'—|x(u | z)du
im 3 = lim 2
A—0 p(Zr € R( )| X =g) A-0 me Pzzix(u|z)du
Apzgix(ea |2) _ [ [ €O 5" 19)dat dat
A—»o A"pzr IX(ZQ} | :B) A—;O ffeG“{"A 12%,2° | 2) g8 dzc

(22)

(23)
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Table 1: Predictions by the Morton-Massaro law (left side) versus diffusion network
(square brackets) for subject 7 of Massaro and Cohen (1983) Experiment 2. Each
prediction of the diffusion network is based on 100 random samples.

Context

Stimulus Vv S P T
0.0017 [0.01] | 0.0000 [0.00] [ 0.0152 [0.03] | 0.9000 [0.91
0.0126 [0.00] | 0.0000 [0.00] [ 0.1008 [0.10] [ 0.9849 [0.97
0.1105 [0.19] | 0.0008 [0.00] | 0.5208 [0.45] [ 0.9984 [1.00
0.5463 [0.54] | 0.0079 [0.00] [ 0.9133 [0.91] [ 0.9998 [1.00
0.9827 [1.00] | 0.2756 [0.30] | 0.9980 [1.00] | 0.9999 [1.00
0.9999 [1.00] | 0.9924 [0.99] | 0.9999 [1.00] [ 1.0000 [1.00
0.9999 [1.00] | 0.9924 [1.00] | 0.9999 [1.00] [ 1.0000 [1.00

O | | Q) B = ©

Now note that

Galz8), 2%, 25| 28) = H(z0), 2%, 2° | 2) = ) 8ae(#8N) = Y Sac(?) = Y 80 (25),
i=1 i i

(24)

T

and since Y7, S, (28)) = 71 Sa, (28%), it follows that

o P(Zr € Rg) | X =2) ffeh'(zf’.z'.z‘lz}—& Sai(20)=X; Sa; (%) o8 dye
A—0 P(Zr € Rg) | X =z) IIBH(ZSJ'Z'J‘ | 2)=30; Sai(28)—X; Sa;(25) 4,8 dz".
(25)

It is easy to show that this ratio factorizes. Moreover, for all A > 0 if we let
o = -+ = a, = a, where @ > 0 then

lim P(Z; € [A,1-A]) =0, (26)

since as the gain of the response units increases S,, decreases very fast at the corners
of (0,1)". Thus as @ — oo the random variable Z7, converges in distribution to a
discrete random variable with mass at the corner of the [0, 1]” hypercube and with
factorized probability ratios as expressed on (25). Since the indexing of the response
units is arbitrary the argument applies to all the responses.

a

4 Discussion

Our analysis establishes that in diffusion networks the Morton-Massaro law is not
incompatible with the presence of feedback and lateral connections. Surprisingly,
even though in diffusion networks with feedback connections stimulus and context
units are interdependent, it is still possible to factorize the effect of stimulus and
context on response probabilities.

The analysis shows that the Morton-Massaro can be arbitrarily approximated as
the sharpness of the response units is increased. In practice we have found very
good approximations with relatively small values of the sharpness parameter (see
Table 1 for an example). The analysis assumed that the weights were symmetric.
Mathematical analysis of the general case with non-symmetric weights is difficult.
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However useful approximations exist (Movellan & McClelland, 1995) showing that
if the noise parameter o is relatively small or if the activation function ¢ is approx-
imately linear, symmetric weights are not needed to exhibit the Morton-Massaro
law.

The analysis presented here has potential applications to investigate models of per-
ception and the functional architecture of the brain. For example the interactive
activation model of word perception has a separable architecture and thus, diffusion
versions of it adhere to the Morton Massaro law. The analysis also points to po-
tential applications in computational neuroscience. It would be of interest to study
whether the Morton-Massaro holds at the level of neural responses. For example,
we may excite a neuron with two different sources of information and observe its
short term average response to combination of stimuli. If the observed distribution
of responses exhibits the Morton-Massaro law, this would be consistent with the
existence of separable channels converging into that neuron. Otherwise, it would
indicate that the channels from the two input areas to the response may not be
structurally separable.
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