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Abstract 

The problem of reinforcement learning in a non-Markov environment is 
explored using a dynamic Bayesian network, where conditional indepen­
dence assumptions between random variables are compactly represented 
by network parameters. The parameters are learned on-line, and approx­
imations are used to perform inference and to compute the optimal value 
function. The relative effects of inference and value function approxi­
mations on the quality of the final policy are investigated, by learning to 
solve a moderately difficult driving task. The two value function approx­
imations, linear and quadratic, were found to perform similarly, but the 
quadratic model was more sensitive to initialization. Both performed be­
low the level of human performance on the task. The dynamic Bayesian 
network performed comparably to a model using a localist hidden state 
representation, while requiring exponentially fewer parameters. 

1 Introduction 

Reinforcement learning (RL) addresses the problem of learning to act so as to maximize 
a reward signal provided by the environment. Online RL algorithms try to find a policy 
which maximizes the expected time-discounted reward. They do this through experience 
by performing sample backups to learn a value function over states or state-action pairs. 

If the decision problem is Markov in the observable states, then the optimal value function 
over state-action pairs yields all of the information required to find the optimal policy for 
the decision problem. When complete know ledge of the environment is not available, states 
which are different may look the same; this uncertainty is called perceptual aliasing [1], 
and causes decision problems to have dynamics which are non-Markov in the perceived 
state . 

• Correspondence address 
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1.1 Partially observable Markov decision processes 

Many interesting decision problems are not Markov in the inputs. A partially observable 
Markov decision process (POMDP) is a formalism in which it is assumed that a process is 
Markov, but with respect to some unobserved (i.e. "hidden") random variable. The state of 
the variable at time t, denoted st, is dependent only on the state at the previous time step and 
on the action performed. The currently-observed evidence is assumed to be independent of 
previous states and observations given the current state. 

The state of the hidden variable is not known with certainty, so a belief state is maintained 
instead. At each time step, the beliefs are updated by using Bayes' theorem to combine the 
belief state at the previous time step (passed through a model of the system dynamics) with 
newly observed evidence. In the case of discrete time and finite discrete state and actions, a 
POMDP is typically represented by conditional probability tables (CPTs) specifying emis­
sion probabilities for each state, and transition probabilities and expected rewards for states 
and actions. This corresponds to a hidden Markov model (HMM) with a distinct transition 
matrix for each action. The hidden state is represented by a single random variable that can 
take on one of K values. Exact belief updates can be computed using Bayes' rule. 

The value function is not over the discrete state, but over the real-valued belief state. It has 
been shown that the value function is piecewise linear and convex [2]. In the worst case, 
the number of linear pieces grows exponentially with the problem horizon, making exact 
computation of the optimal value function intractable. 

Notice that the localist representation, in which the state is encoded in a single random 
variable, is exponentially inefficient: Encoding n bits of information about the state of the 
process requires 2n possible hidden states. This does not bode well for the abilities of 
models which use this representation to scale up to problems with high-dimensional inputs 
and complex non-Markov structure. 

1.2 Factored representations 

A Bayesian network can compactly represent the state of the system in a set of random 
variables [3]. A two time-slice dynamic Bayesian network (DBN) represents the system at 
two time steps [4]. The conditional dependencies between random variables from time t to 
time t + 1, and within time step t, are represented by edges in a directed acyclic graph. The 
conditional probabilities can be stored explicitly, or parameterized by weights on edges in 
the graph. 

If the network is densely-connected then inference is intractable [5]. Approximate infer­
ence methods include Markov chain Monte Carlo [6], variational methods [7], and belief 
state simplification [8]. 

In applying a DBN to a large problem there are three distinct issues to disentangle: How 
well does a parameterized DBN capture the underlying POMDP; how much is the DBN 
hurt by approximate inference; and how good must the approximation of the value function 
be to achieve reasonable performance? We try to tease these issues apart by looking at the 
performance of a DBN on a problem with a moderately large state-space and non-Markov 
structure. 

2 The algorithm 

We use a fully-connected dynamic sigmoid belief network (DSBN) [9], with K units at 
each time slice (see figure 1). The random variables Si are binary, and conditional proba-
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Figure 1: Architecture of the 
dynamic sigmoid belief network. 
Circles indicate random variables, 
where a filled circle is observed 
and an empty circle is unobserved. 
Squares are action nodes, and dia­
monds are rewards. 

bilities relating variables at adjacent time-steps are encoded in action-specific weights: 

P(s~+1 = II{sD~=l,at) = a (twi~st) (1) 
k=l 

where wi~ is the weight from the ith unit at time step t to the kth unit at time step t + 1, 
assuming action at is taken at time t. The nonlinearity is the usual sigmoid function: 
a(x) = 1/1 +exp{ -x}. Note that a bias can be incorporated into the weights by clamping 
one of the binary units to 1. 

The observed variables are assumed to be discrete; the conditional distribution of an output 
given the hidden state is multinomial and parameterized by output weights. The probability 
of observing an output with value t is given by: 

K exp {L:~1 Uklst} 
P(ot = ll{sDk 1) = { } = 101 K t 

L:m=l exp L:k=l UkmSk 
(2) 

where ot E 0 and Ukl denotes the output weight from hidden unit k to output value t. 

2.1 Approximate inference 

Inference in the fully-connected Bayesian network is intractable. Instead we use a varia­
tional method with a fully-factored approximating distribution: 

K 

P(stlst-1,at- 1,ot) ~ Pst ~ II,u~t(I-,uk)l-S~ (3) 

k==l 
where the ,uk are variational parameters to be optimized. This is the standard mean-field 
approximation for a sigmoid belief network [10]. The parameters,u are optimized by iterat­
ing the mean-field equations, and converge in a few iterations. The values of the variational 
parameters at time t are held fixed while computing the values for step t + 1. This is 
analogous to running only the forward portion of the HMM forward-backward algorithm 
[11]. 

The parameters of the DSBN are optimized online using stochastic gradient ascent in the 
log-likelihood: 

U f--- (4) 
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where Wand U are the transition and emission matrices respectively, aw and au are 
learning rates, the vector J-L contains the fully-factored approximate belief state, and 1/ is a 
vector of zeros with a one in the otth place. The notation [·]k denotes the kth element of a 
vector (or kth column of a matrix). 

2.2 Approximating the value function 

Computing the optimal value function is also intractable. If a factored state-space represen­
tation is appropriate, it is natural (if extreme) to assume that the state-action value function 
can be decomposed in the same way: 

K 

Q(Pst, at) ~ L Qk (J-Lt, at) t::. Q F(J-L, at) (5) 

k=l 

This simplifying assumption is still not enough to make finding the optimal value func­
tion tractable. Even if the states were completely independent, each Q k would still be 
piecewise-linear and convex, with the number of pieces scaling exponentially with the hori­
zon. We test two approximate value functions, a linear approximation: 

and a quadratic approximation: 

K 

L qk,a' J-Lk = [Q]a t T . J-L 
k=l 

K 

L ¢k,at J-Lk + qk,at J-Lk + bat 
k=l 

[~]at T . (J-L 0 J-L) + [Q]at T . J-L + [blat 

(6) 

(7) 

Where ~, Q and b are parameters of the approximations. The notation [·]i denotes the 
ith column of a matrix, [.]T denotes matrix transpose and 0 denotes element-wise vector 
multiplication. 

We update each term of the factored approximation with a modified Q-Iearning rule [12], 
which corresponds to a delta-rule where the target for input J-L is rt + 'Y maxa Q F (J-LH I , a): 

¢k,at t- ¢k,at + a J-Lk EB 

qk,at t- qk ,at + a J-Lk EB 

bat t- bat + a EB (8) 

Here a is a learning rate, 'Y is the temporal discount factor, and EB is the Bellman residual: 

(9) 

3 Experimental results 

The "New York Driving" task [13] involves navigating through slower and faster one-way 
traffic on a multi-lane highway. The speed of the agent is fixed, and it must change lanes to 
avoid slower cars and move out of the way of faster cars. If the agent remains in front of a 
faster car, the driver of the fast car will honk its horn, resulting in a reward of -1.0. Instead 
of colliding with a slower car, the agent can squeeze past in the same lane, resulting in a 
reward of -10.0. A time step with no horns or lane-squeezes constitutes clear progress, 
and is rewarded with +0 .1. See [13] for a detailed description of this task. 
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Table 1: Sensory input for the New York driving task 

Dimension I Size I Values 
Hear horn 2 yes,no 
Gaze object 3 truck, shoulder, road 
Gaze speed 2 looming, receding 
Gaze distance 3 far, near, nose 
Gaze refined distance 2 far-half, near-half 
Gaze colour 6 red, blue, yellow, white, gray, tan 

A modified version of the New York Driving task was used to test our algorithm. The 
task was essentially the same as described in [13], except that the "gaze side" and "gaze 
direction" inputs were removed. See table 1 for a list of the modified sensory inputs. 

The performance of a number of algorithms and approximations were measured on the task: 
a random policy; Q-Iearning on the sensory inputs; a model with a localist representation 
(i.e. the hidden state consisted of a single multinomial random variable) with linear and 
quadratic approximate value functions; the DSBN with mean-field inference and linear and 
quadratic approximations; and a human driver. The localist representation used the linear 
Q-Iearning approximation of [14], and the corresponding quadratic approximation. The 
quadratic approximations were trained both from random initialization, and from initial­
ization with the corresponding learned linear models (and random quadratic portion). The 
non-human algorithms were each trained for 100000 iterations, and in each case a constant 
learning rate of 0.01 and temporal decay rate of 0.9 were used. The human driver (the au­
thor) was trained for 1000 iterations using a simple character-based graphical display, with 
each iteration lasting 0.5 seconds. 

Stochastic policies were used for all RL algorithms, with actions being chosen from a 
Boltzmann distribution with temperature decreasing over time: 

(10) 

The DSBN had 4 hidden units per time slice, and the localist model used a multinomial 
with 16 states. The Q-Iearner had a table representation with 2160 entries. After training, 
each non-human algorithm was tested for 20 trials of 5000 time steps each. The human was 
tested for 2000 time steps, and the results were renormalized for comparison with the other 
methods. The results are shown in figure 2. All results were negative, so lower numbers 
indicate better performance in the graph. The error bars show one standard deviation across 
the 20 trials. 

There was little performance difference between the localist representation and the DSBN 
but, as expected, the DSBN was exponentially more efficient in its hidden-state represen­
tation. The linear and quadratic approximations performed comparably, but well below 
human performance. However, the DSBN with quadratic approximation was more sensi­
tive to initialization. When initialized with random parameter settings, it failed to find a 
good policy. However, it did converge to a reasonable policy when the linear portion of the 
quadratic model was initialized with a previously learned linear model. 

The hidden units in the DSBN encode useful features of the input, such as whether a car 
was at the "near" or "nose" position. They also encode some history, such as current gaze 
direction. This has advantages over a simple stochastic policy learned via Q-Iearning: If the 
Q-Iearner knows that there is an oncoming car, it can randomly select to look left or right. 
The DSBN systematically looks to the left, and then to the right, wasting fewer actions. 
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Figure 2: Results on the New York 
Driving task for nine algorithms: 
R=random; Q=Q-Ieaming; LC=linear 
multinomial; QCR=quadratic multi­
nomial, random init.; QCL=quadratic 
multinomial, linear init; LD=linear 
DSBN; QDR=quadratic DSBN, ran­
dom init.; QDL=quadratic DSBN, 
linear init.; H=human 

The DSBN performed better than a standard Q-learner, and comparably to a model with 
a localist representation, despite using approximate inference and exponentially fewer pa­
rameters. This is encouraging, since an efficient encoding of the state is a prerequisite 
for tackling larger decision problems. Less encouraging was the value-function approxi­
mation: When compared to human performance, it is clear that all methods are far from 
optimal, although again the factored approximation of the DSBN did not hurt performance 
relative to the localist multinomial representation. The sensitivity to initialization of the 
quadratic approximation is worrisome, but the success of initializing from a simpler model 
suggests that staged learning may be appropriate, where simple models are learned and 
used to initialize more complex models. These findings echo those of [14] in the context of 
learning a non-factored approximate value function. 

There are a number of related works, both in the fields of reinforcement learning and 
Bayesian networks. We use the sigmoid belief network mean-field approximation given 
in [10], and discussed in the context of time-series models (the "fully factored" approxi­
mation) in [15]. Approximate inference in dynamic Bayesian networks has been discussed 
in [15] and [8]. The additive factored value function was used in the context of factored 
MDPs (with no hidden state) in [16], and the linear Q-learning approximation was given 
in [14]. Approximate inference was combined with more sophisticated value function ap­
proximation in [17]. To our knowledge, this is the first attempt to explore the practicality 
of combining all of these techniques in order to solve a single problem. 

There are several possible extensions. As described above, the representation learned by 
the DSBN is not tuned to the task at hand. The reinforcement information could be used 
to guide the learning of the DSBN parameters[18, 13]. Also, if this were done, then the 
reinforcement signals would provide additional evidence as to what state the POMDP is in, 
and could be used to aid inference. More sophisticated function approximation could be 
used [17]. Finally, although this method appears to work in practice, there is no guarantee 
that the reinforcement learning will converge. We view this work as an encouraging first 
step, with much further study required. 

5 Conclusions 

We have shown that a dynamic Bayesian network can be used to construct a compact rep­
resentation useful for solving a decision problem with hidden state. The parameters of the 
DBN can be learned from experience. Learning occurs despite the use of simple value-
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function approximations and mean-field inference. Approximations of the value function 
result in good performance, but are clearly far from optimal. The fully-factored assump­
tions made for the belief state and the value function do not appear to impact performance, 
as compared to the non-factored model. The algorithm as presented runs entirely on-line 
by performing "forward" inference only. There is much room for future work, including 
improving the utility of the factored representation learned, and the quality of approximate 
inference and the value function approximation. 

Acknowledgments 

We thank Geoffrey Hinton, Zoubin Ghahramani and Andy Brown for helpful discussions, 
the anonymous referees for valuable comments and criticism, and particularly Peter Dayan 
for helpful discussions and comments on an early draft of this paper. This research was 
funded by NSERC Canada and the Gatsby Charitable Foundation. 

References 

[1] S.D. Whitehead and D.H. Ballard. Learning to perceive and act by trial and error. Machine 
Learning, 7, 1991. 

[2] EJ. Sondik. The optimal control of partially observable Markov processes over the infinite 
horizon: Discounted costs. Operations Research, 26:282-304, 1973. 

[3] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Mor­
gan Kaufmann, San Mateo, CA, 1988. 

[4] T. Dean and K. Kanazawa. A model for reasoning about persistence and causation. Computa­
tionallntelligence, 5, 1989. 

[5] Gregory F. Cooper. The computational complexity of probabilistic inference using Bayesian 
belief networks. Anijiciallntelligence, 42:393-405, 1990. 

[6] R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical Report 
CRG-TR-93-1, Department of Computer Science, University of Toronto, 1993. 

[7] M.I. Jordan, Z. Ghahramani, T.S. Jaakkola, and L.K. Saul. An introduction to variational meth­
ods for graphical models. Machine Learning, 1999. in press. 

[8] X. Boyen and D. Koller. Tractable inference for complex stochastic processes. In Proc. UA1'98, 
1998. 

[9] R. M. Neal. Connectionist learning of belief networks. Artijiciallntelligence, 56:71-113, 1992. 

[10] L. K. Saul, T. Jaakkola, and M. I. Jordan. Mean field theory for sigmoid belief networks. 
Journal of Artijiciallntelligence Research, 4:61-76, 1996. 

[11] Lawrence R. Rabiner and Biing-Hwang Juang. An introduction to hidden Markov models. 
IEEE ASSAP Magazine , 3:4-16, January 1986. 

[12] CJ.C.H. Watkins and P. Dayan. Q-Iearning. Machine Learning, 8:279-292, 1992. 

[13] A.K. McCallum. Reinforcement learning with selective perception and hidden state. Dept. of 
Computer Science, Universiy of Rochester, Rochester NY, 1995. Ph.D. thesis. 

[14] M.L. Littman, A.R. Cassandra, and L.P. Kaelbling. Learning policies for partially observable 
environments: Scaling up. In Proc. International Conference on Machine Learning, 1995. 

[15] Z. Ghahramani and M. I. Jordan. Factorial hidden Markov models. Machine Learning, 1997. 

[16] D. Koller and R. Parr. Computing factored value functions for policies in structured MDPs. In 
Proc. lJCA/'99, 1999. 

[17] A. Rodriguez, R. Parr, and D. Koller. Reinforcement learning using approximate belief states. In 
S. A. Solla, T. K. Leen, and K.-R. Mtiller, editors, Advances in Neural Information Processing 
Systems, volume 12. The MIT Press, Cambridge, 2000. 

[18] L. Chrisman. Reinforcement learning with perceptual aliasing: The perceptual distinctions 
approach. In Tenth National Conference on AI, 1992. 


