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Abstract 

We propose a novel approach for building finite memory predictive mod­
els similar in spirit to variable memory length Markov models (VLMMs). 
The models are constructed by first transforming the n-block structure of 
the training sequence into a spatial structure of points in a unit hypercube, 
such that the longer is the common suffix shared by any two n-blocks, 
the closer lie their point representations. Such a transformation embodies 
a Markov assumption - n-blocks with long common suffixes are likely 
to produce similar continuations. Finding a set of prediction contexts is 
formulated as a resource allocation problem solved by vector quantizing 
the spatial n-block representation. We compare our model with both the 
classical and variable memory length Markov models on three data sets 
with different memory and stochastic components. Our models have a 
superior performance, yet, their construction is fully automatic, which is 
shown to be problematic in the case of VLMMs. 

1 Introduction 

Statistical modeling of complex sequences is a prominent theme in machine learning due 
to its wide variety of applications (see e.g. [5)). Classical Markov models (MMs) of finite 
order are simple, yet widely used models for sequences generated by stationary sources. 
However, MMs can become hard to estimate due to the familiar explosive increase in the 
number of free parameters when increasing the model order. Consequently, only low or­
der MMs can be considered in practical applications. Some time ago, Ron, Singer and 
Tishby [4] introduced at this conference a Markovian model that could (at least partially) 
overcome the curse of dimensionality in classical MMs. The basic idea behind their model 
was simple: instead of fixed-order MMs consider variable memory length Markov models 
(VLMMs) with a "deep" memory just where it is really needed (see also e.g. [5][7]). 

The size of VLMMs is usually controlled by one or two construction parameters. Unfor­
tunately, constructing a series of increasingly complex VLMMs (for example to enter a 
model selection phase on a validation set) by varying the construction parameters can be 
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a troublesome task [1). Construction often does not work "smoothly" with varying the 
parameters. There are large intervals of parameter values yielding unchanged VLMMs in­
terleaved with tiny parameter regions corresponding to a large spectrum of VLMM sizes. 
In such cases it is difficult to fully automize the VLMM construction. 

To overcome this drawback, we suggest an alternative predictive model similar in spirit 
to VLMMs. Searching for the relevant prediction contexts is reformulated as a resource 
allocation problem in Euclidean space solved by vector quantization. A potentially pro­
hibitively large set of alilength-L blocks is assigned to a much smaller set of prediction 
contexts on a suffix basis. To that end, we first transform the set of L-blocks appearing in 
the training sequence into a set of points in Euclidean space, such that points corresponding 
to blocks sharing a long common suffix are mapped close to each other. Vector quantiza­
tion on such a set partitions the set of L-blocks into several classes dominated by common 
suffixes. Quantization centers play the role of predictive contexts. A great advantage of our 
model is that vector quantization can be performed on a completely self-organized basis. 

We compare our model with both classical MMs and VLMMs on three data sets repre­
senting a wide range of grammatical and statistical structure. First, we train the models on 
the Feigenbaum binary sequence with a very strict topological and metric organization of 
allowed subsequences. Highly specialized, deep prediction contexts are needed to model 
this sequence. Classical Markov models cannot succeed and the full power of admitting a 
limited number of variable length contexts can be exploited. The second data set consists of 
quantized daily volatility changes of the Dow Jones Industrial Average (DnA). Predictive 
models are used to predict the direction of volatility move for the next day. Financial time 
series are known to be highly stochastic with a relatively shallow memory structure. In this 
case, it is difficult to beat low-order classical MMs. One can perform better than MMs only 
by developing a few deeper specialized contexts, but that, on the other hand, can lead to 
overfitting. Finally, we test our model on the experiments of Ron, Singer and Tishby with 
language data from the Bible [5]. They trained classical MMs and a VLMM on the books 
of the Bible except for the book of Genesis. Then the models were evaluated on the bases 
of negative log-likelihood on an unseen text from Genesis. We compare likelihood results 
of our model with those of MMs and VLMMs. 

2 Predictive models 

We consider sequences S = 8182 .. . over a finite alphabet A = {I, 2, ... , A} generated by 
stationary sources. The set of all sequences over A with exactly n symbols is denoted by 
An . 

An information source over A = {I, 2, ... , A} is defined by a family of consistent prob-
ability measures Pn on An, n = 0,1,2, .. . , :LIEA Pn+1 (ws) = Pn(w), for all wEAn 
(AO = {A} and Po(A) = 1, A denotes the empty string). 

In applications it is useful to consider probability functions Pn that are easy to handle. 
This can be achieved, for example, by assuming a finite source memory of length at most 
L, and formulating the conditional measures P(slw) = PL+1(WS)/PL(w), WEAL, 
using a function c : AL ~ C, from L-blocks over A to a (presumably small) finite set C of 
prediction contexts: 

P(slw) = P(sjc(w)). (1) 

In Markov models (MMs) of order n :s; L, for all L-blocks w E A L, c( w) is the length-n 
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suffix ofw, i.e. c(uv) = v, v E An, U E A L - n . 

In variable memory length Markov models (VLMMs), the suffices c( w) of L-blocks w E 
AL can have different lengths, depending on the particular L-block w. For strategies of 
selecting and representing the prediction contexts through prediction suffix trees and/or 
probabilistic suffix automata see, for example, [4](5]. VLMM construction is controlled by 
one, or several parameters regulating selection of candidate contexts and growing/pruning 
decisions. 

Prediction context function c : AL -+ C in Markov models of order n ~ L, can be 
interpreted as a natural homomorphism c : AL -+ AL 1£ corresponding to the equivalence 
relation E ~ AL X AL on L-blocks over A: two L-blocks u, v are in the same class, i.e. 
( U, v) E E, if they share the same suffix of length n. The factor set ALI £ = C = An 

consists of all n-blocks over A. Classical MMs define the equivalence E on the suffix 
bases, but regardless of the suffix structure present in the training data. Our idea is to keep 
the Markov-motivated suffix strategy for constructing E, but at the same time take into an 
account the data suffix structure. 

Vector quantization on a set of B points in a Euclidean space positions N < < B codebook 
vectors (CV s), each CV representing a subset of points that are closer to it than to any other 
CV, so that the overall error of substituting CVs for points they represent is minimal. In 
other words, CVs tend to represent points lying close to each other (in a Euclidean metric). 
In order to use vector quantization for determining relevant predictive contexts we need to 
do two things: 

1. Define a suitable metric in the sequence space that would correspond to Markov 
assumptions: 

(a) two sequences are "close" if they share a common suffix 
(b) the longer is the common suffix the closer are the sequences 

2. Define a uniformly continuous map from the sequence metric space to the Eu­
clidean space, i.e. sequences that are close in the sequence space (i.e. share a long 
common suffix) are mapped close to each other in the Euclidean space. 

In [6] we rigorously study a class of such spatial representations of symbolic structures. 
Specifically, a family of distances between two L-blocks U = UIU2 ... UL-IUL and v = 
VI V2·· . V L-l V L over A = {I, 2, ... , A}, expressed as 

L 1 
dk(u, v) = L kL - i+1c5 (Ui, Vi), k $ 2' (2) 

i=l 

with c5(i,j) = 1 if i = j, and c5(i,j) = ° otherwise, correspond to Markov assumption. 
The parameter k influences the rate of "forgetting the past". We construct a map from 
the sequence metric space to the Euclidean space as follows: Associate with each symbol 
i E A a map 

(3) 

operating on a unit D-dimensional hypercube [0, l]D . Dimension of the hypercube should 
be large enough so that each symbol i is associated with a unique vertex, i.e. D = flog2 A 1 
and tj #- tj whenever i #- j. The map u : AL -+ [0, l]D, from L-blocks VIV2 ... VL over A 

to the unit hypercube, 

U(VI V2 ... VL) = VdVL-l( . ,.(V2(VI(X*))) ... )) = (VL 0 VL-l 0 . . . 0 V2 0 vt}(x*), (4) 
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where x· {~}D is the center of the hypercube, is "unifonnly continuous". Indeed, 
whenever two sequences u, v share a common suffix of length Q, the Euclidean distance 
between their point representations O'(u) and O'(v) is less than V2kQ. Strictly speaking, 
for a mathematically correct treatment of unifonn continuity, we would need to consider 
infinite sequences. Finite blocks of symbols would then correspond to cylinder sets (see 
[6]). For sake of simplicity we only deal with finite sequences. 

As with classical Markov models, we define the prediction context function c : A L -t C 
via an equivalence £ on L-blocks over A: two L-blocks u, v are in the same class if their 
images under the map 0' are represented by the same codebook vector. In this case, the set 
of prediction contexts C can be identified with the set of codebook vectors {bI , b2 , ... , b N }, 

hi E ~D, i = 1,2, ... , N. We refer to predictive models with such a context function as 
prediction/ractal machines (PFMs). The prediction probabilities (1) are determined by 

N(i, s) 
P(slbd = L: N(' )' sEA, 

aEA Z, a 
(5) 

where N(i , a) is the number of (L+l)-blocks ua, a E AL, a E A, in the training sequence, 
such that the point 0'( u) is allocated to the codebook vector bi . 

3 Experiments 

In all experiments we constructed PFMs using a contraction coefficient k = ~ (see eq. (3» 
and K-means as a vector quantization tool. 

The first data set is the Feigenbaum sequence over the binary alphabet A = {1,2}. This 
sequence is well-studied in symbolic dynamics and has a number of interesting proper­
ties. First, the topological structure of the sequence can only be described using a context 
sensitive tool - a restricted indexed context-free grammar. Second, for each block length 
n = 1, 2, .. . , the distribution of n-blocks is either unifonn, or has just two probability lev­
els. Third, the n-block distributions are organized in a self-similar fashion (see [2]). The 
sequence can be specified by the subsequence composition rule ' 

(6) 

We chose to work with the Feigenbaum sequence, because increasingly accurate model­
ing of the sequence with finite memory models requires a selective mechanism for deep 
prediction contexts. 

We created a large portion of the Feigenbaum sequence and trained a series of classical 
MMs, variable memory length MMs (VLMMs), and prediction fractal machines (PFMs) 
on the first 260,000 symbols. The following 200,000 symbols fonned a test set. Maximum 
memory length L for VLMMs and PFMs was set to 30. 

As mentioned in the introduction, constructing a series of increasingly complex VLMMs . 
by varying the construction parameters appeared to be a troublesome task. We spent a fair 
amount of time finding "critical" parameter values at which the model size changed. In 
contrast, a fully automatic construction of PFMs involved sliding a window of length L = 
30 through the training set; for each window position, mapping the L-block u appearing 
in the window to the point 0'( u) (eq. (4», vector-quantizing the resulting set of points (up 
to 30 codebook vectors). After the quantization step we computed predictive probabilities 
according to eq. (5). 
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Table I: Normalized negative log-likelihoods (NNL) on the Feigenbaum test set. 

model # contexts NNL captured block distribution 
PFM 2-4 0.6666 1-3 

5-7 0.3333 1-6 
8-22 0.1666 1-12 
23- 0.0833 1-24 

VLMM 2-4 0.6666 1-3 
5 0.3333 1-6 
11 0.1666 1-12 
23 0.0833 1-24 

MM 2,4,8,16,32 0.6666 1-3 

Negative log-likelihoods per symbol (the base oflogarithm is always taken to be the number 
of symbols in the alphabet) of the test set computed using the fitted models exhibited a step­
like increasing tendency shown in Table 1. We also investigated the ability of the models 
to reproduce the n-block distribution found in the training and test sets. This was done by 
letting the models generate sequences of length equal to the length of the training sequence 
and for each block length n = 1,2, ... , 30, computing the L1 distance between the n-block 
distribution of the training and model-generated sequences. The n-block distributions on 
the test and training sets were virtually the same for n = 1,2, ... 30. In Table I we show 
block lengths for which the L1 distance does not exceed a small threshold~ . We set 
~ = 0.005, since in this experiment, either the L1 distance was less 0.005, or exceeded 
0.005 by a large amount. 

An explanation of the step-like behavior in the log-likelihood and n-block modeling be­
havior of VLMMs and PFMs is out of the scope of this paper. We briefly mention, how­
ever, that by combining the knowledge about the topological and metric structur~s of the 
Feigenbaum sequence (e.g. [2]) with a careful analysis of the models, one can show why 
and when an inclusion of a prediction context leads to an abrupt improvement in the mod­
eling performance. In fact, we can show that VLMMs and PFMs constitute increasingly 
better approximations to the infinite self-similar Feigenbaum machine known in symbolic 
dynamics [2]. 

The classical MM totally fails in this experiment, since the context length 5 is far too 
small to enable the MM to mimic the complicated subsequence structure in the Feigenbaum 
sequence. PFMs and VLMMs quickly learn to explore a limited number of deep prediction 
contexts and perform comparatively well. 

In the second experiment, a time series {xtJ of the daily values ofthe Dow Jones Industrial 
Average (DJIA) from Feb. 1 1918 until April 1 1997 was transformed into a time series 
of returns rt = log Xt+1 - log Xt, and divided into 12 partially overlapping epochs, each 
containing about 2300 values (spanning approximately 9 years). We consider the squared 
return r; a volatility estimate for day t. Volatility change forecasts (volatility is going to 
increase or decrease) based on historical returns can be interpreted as a buying or selling 
signal for a straddle (see e.g. [3]). If the volatility decreases we go short (straddle is sold), 
if it increases we take a long position (straddle is bought). In this respect, the quality of 
a volatility model can be measured by the percentage of correctly predicted directions of 
daily volatility differences. 
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Table 2: Prediction perfonnance on the DJIA volatility series. 

Percent correct on test set 
model 1 2 3 4 5 6 
PPM 71.08 70.39 69.70 70.05 72.12 72.46 

VLMM 68.67 68.18 68.79 69.25 69.41 68.29 
MM 68.56 69.11 69.78 68.28 69.50 73.13 

7 8 9 10 11 12 
PPM 74.01 71.77 73.84 73.84 71,77 74.19 

VLMM 69.83 67.00 67.96 70.76 69.80 70.25 
MM 74.16 71.96 69.95 69.16 71.74 71.07 

The series {r~+1 - r~} of differences between the successive squared returns is transfonned 
into a sequence {Dt} over 4 symbols by quantizing the series {r~+1 - rn as follows: 

{

I (extreme down), if rr+1 - rr < 01 < 0 

D - 2 (nonnal down), if 01 ~ r;+1 - r~ < a 
t - 2 2 3 (nonnal up), if a ~ rt~1 - r t < O2 

4 (extreme up), if 02 ~ rt+1 - r;, 
(7) 

where the parameters 01 and ()2 correspond to Q percent and (100 - Q) percent sample 
quantiles, respectively. So, the upper (lower) Q% of all daily volatility increases (de­
creases) in the sample are considered extremal, and the lower (upper) (50 - Q)% of daily 
volatility increases (decreases) are viewed as nonnal. 

Each epoch is partitioned into training, validation and test parts containing 110, 600 and 
600 symbols, respectively. Maximum memory length L for VLMMs and PFMs was set to 
10 (two weeks). We trained classical MMs, VLMMs and PFMs with various numbers of 
prediction contexts (up to 256) and extremal event quantiles Q E {5, 10, 15, ... , 45}. For 
each model class, the model size and the quantile Q to be used on the test set were'selected 
according to the validation set perfonnance. Perfonnance of the models was quantified as 
the percentage of correct guesses of the volatility change direction for the next day. If the 
next symbol is 1 or 2 (3 or 4) and the sum of conditional next symbol probabilities for 1 
and 2 (3 and 4) given by a model is greater than 0.5, the model guess is considered correct. 
Results are shown in Table 2. Paired t-test reveals that PFMs significantly (p < 0.005) 
outperfonn both VLMMs and classical MMs. 

Of course, fixed-order MMs are just special cases of VLMMs, so theoretically, VLMMs 
cannot perfonn worse than MMs. We present separate results for MMs and VLMMs to 
illustrate practical problems in fitting VLMMs. Besides familiar problems with setting the 
construction parameter values, one-parameter-schemes (like that presented in [4] and used 
here) operate only on small subsets of potential VLMMs. On data sets with a rather shallow 
memory structure, this can have a negative effect. 

The third experiment extends the work of Ron, Singer and Tishby [5]. They tested classical 
MMs and VLMMs on the Bible. The alphabet is English letters and the blank character (27 
symbols). The training set consisted of the Bible except for the book of Genesis. The test 
set was a portion of 236 characters from the book of Genesis. They set the maximal mem­
ory depth to L = 30 and constructed a VLMM with about 3000 contexts. Summarizing the 
results in [5], classical MMs of order 0, 1, 2 and 3 achieved negative log-likelihoods per 
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character (NNL) of 0.853, 0.681, 0.560 and 0.555, respectively. The authors point out a 
huge difference between the number of states in MMs of order 2 and 3: 273 - 272 = 18954. 
VLMM performed much better and achieved an NNL of 0.456. In our experiments, we 
set the maximal memory length to L = 30 (the same maximal memory length was used for 
VLMM construction in [5]). PFMs were constructed by vector quantizing a 5-dimensional 
(alphabet has 27 symbols) spatial representation of 3D-blocks appearing in the training set. 
On the test set, PFMs with 100, 500, 1O(}(} and 3000 predictive contexts achieved an NNL 
of 0.622, 0.518, 0.510 and 0.435. 

4 Conclusion 

We presented a novel approach for building finite memory predictive models similar in 
spirit to variable memory length Markov models (VLMMs). Constructing a series of 
VLMMs is often a troublesome and highly time-consuming task requiring a lot of interac­
tive steps. Our predictive models, prediction fractal machines (PFMs), can be constructed 
in a completely automatic and intuitive way - the number of codebook vectors in the vector 
quantization PFM construction step corresponds to the number of predictive contexts. 

We tested our model on three data sets with different memory and stochastic components. 
VLMMs excel over the classical MMs on the Feigenbaum sequence requiring deep pre­
diction contexts. On this sequence, PFMs achieved the same performance as their rivals 
- VLMMs. On financial time series, PFMs significantly outperform the purely symbolic 
Markov models - MMs and VLMMs. On natural language Bible data, our PFM outper­
forms a VLMM of comparable size. 
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