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Abstract 

In hyperspectral imagery one pixel typically consists of a mixture 
of the reflectance spectra of several materials, where the mixture 
coefficients correspond to the abundances of the constituting ma­
terials. We assume linear combinations of reflectance spectra with 
some additive normal sensor noise and derive a probabilistic MAP 
framework for analyzing hyperspectral data. As the material re­
flectance characteristics are not know a priori, we face the problem 
of unsupervised linear unmixing. The incorporation of different 
prior information (e.g. positivity and normalization of the abun­
dances) naturally leads to a family of interesting algorithms, for 
example in the noise-free case yielding an algorithm that can be 
understood as constrained independent component analysis (ICA). 
Simulations underline the usefulness of our theory. 

1 Introduction 

Current hyperspectral remote sensing technology can form images of ground surface 
reflectance at a few hundred wavelengths simultaneously, with wavelengths ranging 
from 0.4 to 2.5 J.Lm and spatial resolutions of 10-30 m. The applications of this 
technology include environmental monitoring and mineral exploration and mining. 
The benefit of hyperspectral imagery is that many different objects and terrain 
types can be characterized by their spectral signature. 

The first step in most hyperspectral image analysis systems is to perform a spectral 
unmixing to determine the original spectral signals of some set of prime materials. 
The basic difficulty is that for a given image pixel the spectral reflectance patterns 
of the surface materials is in general not known a priori. However there are gen­
eral physical and statistical priors which can be exploited to potentially improve 
spectral unmixing. In this paper we address the problem of unmixing hyperspectral 
imagery through incorporation of physical and statistical priors within an unsuper­
vised Bayesian framework. 

We begin by first presenting the linear superposition model for the reflectances 
measured. We then discuss the advantages of unsupervised over supervised systems. 
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We derive a general maximum a posteriori (MAP) framework to find the material 
spectra and infer the abundances. Interestingly, depending on how the priors are 
incorporated, the zero noise case yields (i) a simplex approach or (ii) a constrained 
leA algorithm. Assuming non-zero noise our MAP estimate utilizes a constrained 
least squares algorithm. The two latter approaches are new algorithms whereas the 
simplex algorithm has been previously suggested for the analysis of hyperspectral 
data. 

Linear Modeling To a first approximation the intensities X (Xi>.) measured in 
each spectral band A = 1, ... , L for a given pixel i = 1, ... , N are linear combi­
nations of the reflectance characteristics S (8m >.) of the materials m = 1, ... , M 
present in that area. Possible errors of this approximation and sensor noise are 
taken into account by adding a noise term N (ni>'). In matrix form this can be 
summarized as 

X = AS + N, subject to: AIM = lL, A ~ 0, (1) 

where matrix A (aim) represents the abundance of material m in the area cor­
responding to pixel i, with positivity and normalization constraints. Note that 
ground inclination or a changing viewing angle may cause an overall scale factor for 
all bands that varies with the pixels. This can be incorporated in the model by sim­
ply replacing the constraint AIM = lL with AIM ~ lL which does does not affect 
the discussion in the remainder of the paper. This is clearly a simplified model of 
the physical phenomena. For example, with spatially fine grained mixtures, called 
intimate mixtures, multiple reflectance may causes departures from this first or­
der model. Additionally there are a number of inherent spatial variations in real 
data, such as inhomogeneous vapor and dust particles in the atmosphere, that will 
cause a departure from the linear model in equation (1). Nevertheless, in practical 
applications a linear model has produced reasonable results for areal mixtures. 

Supervised vs. Unsupervised techniques Supervised spectral un mixing re­
lies on the prior knowledge about the reflectance patterns S of candidate surface 
materials, sometimes called endmembers, or expert knowledge and a series of semi­
automatic steps to find the constituting materials in a particular scene. Once the 
user identifies a pixel i containing a single material, i.e. aim = 1 for a given m and 
i, the corresponding spectral characteristics of that material can be taken directly 
from the observations, i.e., 8 m >. = Xi>. [4]. Given knowledge about the endmembers 
one can simply find the abundances by solving a constrained least squares problem. 
The problem with such supervised techniques is that finding the correct S may re­
quire substantial user interaction and the result may be error prone, as a pixel that 
actually contains a mixture can be misinterpreted as a pure endmember. Another 
approach obtains endmembers directly from a database. This is also problematic 
because the actual surface material on the ground may not match the database en­
tries, due to atmospheric absorption or other noise sources. Finding close matches 
is an ambiguous process as some endmembers have very similar reflectance charac­
teristics and may match several entries in the database. 

Unsupervised unmixing, in contrast, tries to identify the endmembers and mixtures 
directly from the observed data X without any user interaction. There are a variety 
of such approaches. In one approach a simplex is fit to the data distribution [7, 6, 2]. 
The resulting vertex points of the simplex represent the desired endmembers, but 
this technique is very sensitive to noise as a few boundary points can potentially 
change the location of the simplex vertex points considerably. Another approach by 
Szu [9] tries to find abundances that have the highest entropy subject to constraints 
that the amount of materials is as evenly distributed as possible - an assumption 
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which is clearly not valid in many actual surface material distributions. A relatively 
new approach considers modeling the statistical information across wavelength as 
statistically independent AR processes [1]. This leads directly to the contextual 
linear leA algorithm [5]. However, the approach in [1] does not take into account 
constraints on the abundances, noise, or prior information. Most importantly, the 
method [1] can only integrate information from a small number of pixels at a time 
(same as the number of endmembers). Typically however we will have only a few 
endmembers but many thousand pixels. 

2 The Maximum A Posterior Framework 

2.1 A probabilistic model of unsupervised spectral unmixing 

Our model has observations or data X and hidden variables A, S, and N that 
are explained by the noisy linear model (1). We estimate the values of the hidden 
variables by using MAP 

(A SIX) = p(XIA, S)p(A, S) = Pn(XIA, S)Pa(A)ps(S) 
p , p(X) p(X) (2) 

with Pa(A), Ps(S), Pn(N) as the a priori assumptions of the distributions. With 
MAP we estimate the most probable values for given priors after observing the data, 

A MAP , SMAP = argmaxp(A, SIX) (3) 
A,S 

Note that for maximization the constant factor p(X) can be ignored. Our first as­
sumption, which is indicated in equation (2) is that the abundances are independent 
of the reflectance spectra as their origins are completely unrelated: (AO) A and S 
are independent. 

The MAP algorithm is entirely defined by the choices of priors that are guided by 
the problem of hyperspectral unmixing: (AI) A represent probabilities for each 
pixel i. (A2) S are independent for different material m. (A3) N are normal i.i.d. 
for all i, A. In summary, our MAP framework includes the assumptions AO-A3. 

2.2 Including Priors 

Priors on the abundances Positivity and normalization of the abundances can 
be represented as, 

(4) 

where 60 represent the Kronecker delta function and eo the step function. With 
this choice a point not satisfying the constraint will have zero a posteriori probabil­
ity. This prior introduces no particular bias of the solutions other then abundance 
constraints. It does however assume the abundances of different pixels to be inde­
pendent. 

Prior on spectra Usually we find systematic trends in the spectra that cause 
significant correlation. However such an overall trend can be subtracted and/or 
filtered from the data leaving only independent signals that encode the variation 
from that overall trend. For example one can capture the conditional dependency 
structure with a linear auto-regressive (AR) model and analyze the resulting "inno­
vations" or prediction errors [3]. In our model we assume that the spectra represent 
independent instances of an AR process having a white innovation process em.>. dis­
tributed according to Pe(e). With a Toeplitz matrix T of the AR coefficients we 
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can write, em = Sm T. The AR coefficients can be found in a preprocessing step on 
the observations X. If S now represents the innovation process itself, our prior can 
be represented as, 

M L L 

Pe (S) <X Pe(ST) = II II Pe( L sm>.d>.>.,) , (5) 
m=1 >.=1 >.'=1 

Additionally Pe (e) is parameterized by a mean and scale parameter and potentially 
parameters determining the higher moments of the distributions. For brevity we 
ignore the details of the parameterization in this paper. 

Prior on the noise As outlined in the introduction there are a number of prob­
lems that can cause the linear model X = AS to be inaccurate (e.g. multiple 
reflections, inhomogeneous atmospheric absorption, and detector noise.) As it is 
hard to treat all these phenomena explicitly, we suggest to pool them into one noise 
variable that we assume for simplicity to be normal distributed with a wavelength 
dependent noise variance a>., 

L 

p(XIA, S) = Pn(N) = N(X - AS,~) = II N(x>. - As>., a>.l) , (6) 
>.=1 

where N (', .) represents a zero mean Gaussian distribution, and 1 the identity matrix 
indicating the independent noise at each pixel. 

2.3 MAP Solution for Zero Noise Case 

Let us consider the noise-free case. Although this simplification may be inaccurate it 
will allow us to greatly reduce the number of free hidden variables - from N M + M L 
to M2 . In the noise-free case the variables A, S are then deterministically dependent 
on each other through a N L-dimensional 8-distribution, Pn(XIAS) = 8(X - AS). 
We can remove one of these variables from our discussion by integrating (2). It is 
instructive to first consider removing A 

p(SIX) <X I dA 8(X - AS)Pa(A)ps(S) = IS-1IPa(XS- 1 )Ps(S). (7) 

We omit tedious details and assume L = M and invertible S so that we can perform 
the variable substitution that introduces the Jacobian determinant IS-II . Let us 
consider the influence of the different terms. The Jacobian determinant measures 
the volume spanned by the endmembers S. Maximizing its inverse will therefore try 
to shrink the simplex spanned by S. The term Pa(XS- 1 ) should guarantee that all 
data points map into the inside of the simplex, since the term should contribute zero 
or low probability for points that violate the constraint. Note that these two terms, 
in principle, define the same objective as the simplex envelope fitting algorithms 
previously mentioned [2]. 
In the present work we are more interested in the algorithm that results from 
removing S and finding the MAP estimate of A. We obtain (d. Eq.(7)) 

p(AIX) oc I dS 8(X - AS)Pa(A)ps(S) = IA -llps(A- 1 X)Pa(A). (8) 

For now we assumed N = M. 1 If Ps (S) factors over m , i.e. endmembers are inde­
pendent, maximizing the first two terms represents the leA algorithm. However, 

lIn practice more frequently we have N > M. In that case the observations X can be 
mapped into a M dimensional subspace using the singular value decomposition (SVD) , 
X = UDVT , The discussion applies then to the reduced observations X = u1x with 
U M being the first M columns of U . 
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the prior on A will restrict the solutions to satisfy the abundance constraints and 
bias the result depending on the detailed choice of Pa(A), so we are led to con­
strained ICA. 
In summary, depending on which variable we integrate out we obtain two methods 
for solving the spectral unmixing problem: the known technique of simplex fitting 
and a new constrained ICA algorithm. 

2.4 MAP Solution for the Noisy Case 

Combining the choices for the priors made in section 2.2 (Eqs.(4), (5) and (6)) with 
(2) and (3) we obtain 

(9) AMAP, SMAP = "''i~ax ft {g N(x", - a,s" a,) ll. P,(t. 'm,d",) } , 

subject to AIM = lL, A 2: O. The logarithm of the cost function in (9) is denoted 
by L = L(A, S). Its gradient with respect to the hidden variables is 

88L = _AT nm diag(O')-l - fs(sm) (10) 
Sm 

where N = X - AS, nm are the M column vectors of N, fs(s) = - olnc;(s). In (10) 
fs is applied to each element of Sm. 

The optimization with respect to A for given S can be implemented as a standard 
weighted least squares (L8) problem with a linear constraint and positivity bounds. 
Since the constraints apply for every pixel independently one can solve N separate 
constrained LS problems of M unknowns each. We alternate between gradient steps 
for S and explicit solutions for A until convergence. Any additional parameters of 
Pe(e) such as scale and mean may be obtained in a maximum likelihood (ML) sense 
by maximizing L. Note that the nonlinear optimization is not subject to constraints; 
the constraints apply only in the quadratic optimization. 

3 Experiments 

3.1 Zero Noise Case: Artificial Mixtures 

In our first experiment we use mineral data from the United States Geological Sur­
vey (USGS)2 to build artificial mixtures for evaluating our unsupervised unmixing 
framework. Three target endmembers where chosen (Almandine WS479, Montmo­
rillonite+Illi CM42 and Dickite NMNH106242). A spectral scene of 100 samples 
was constructed by creating a random mixture of the three minerals. Of the 100 
samples, there were no pure samples (Le. no mineral had more than a 80% abun­
dance in any sample). Figure 1A is the spectra of the endmembers recovered by the 
constrained ICA technique of section 2.3, where the constraints were implemented 
with penalty terms added to the conventional maximum likelihood ICA algorithm. 
These are nearly identical to the spectra of the true endmembers, shown in fig­
ure 1B, which were used for mixing. Interesting to note is the scatter-plot of the 
100 samples across two bands. The open circles are the absorption values at these 
two bands for endmembers found by the MAP technique. Given that each mixed 
sample consists of no more than 80% of any endmember, the endmember points 
on the scatter-plot are quite distant from the cluster. A simplex fitting technique 
would have significant difficulty recovering the endmembers from this clustering. 

2see http://speclab.cr . usgs.gov /spectral.lib.456.descript/ decript04.html 
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Figure 1: Results for noise-free artificial mixture. A recovered endmembers using 
MAP technique. B "true" target endmembers. C scatter plot of samples across 2 
bands showing the absorption of the three endmembers computed by MAP (open 
circles). 

3.2 Noisy Case: Real Mixtures 

To validate the noise model MAP framework of section 2.4 we conducted an ex­
periment using ground truthed USGS data representing real mixtures. We selected 
lOxl0 blocks of pixels from three different regions3 in the AVIRIS data of the 
Cuprite, Nevada mining district. We separate these 300 mixed spectra assuming 
two endmembers and an AR detrending with 5 AR coefficients and the MAP tech­
niques of section 2.4. Overall brightness was accounted for as explain in the linear 
modeling of section 1. The endmembers are shown in figure 2A and B in comparison 
to laboratory spectra from the USGS spectral library for these minerals [8J . Figure 
2C shows the corresponding abundances, which match the ground truth; region 
(III) mainly consists of Muscovite while regions (1)+(I1) contain (areal) mixtures of 
Kaolinite and Muscovite. 

4 Discussion 

Hyperspectral unmixing is a challenging practical problem for unsupervised learn­
ing. Our probabilistic approach leads to several interesting algorithms: (1) simplex 
fitting, (2) constrained ICA and (3) constrained least squares that can efficiently use 
multi-channel information. An important element of our approach is the explicit 
use of prior information. Our simulation examples show that we can recover the 
endmembers, even in the presence of noise and model uncertainty. The approach 
described in this paper does not yet exploit local correlations between neighboring 
pixels that are well known to exist. Future work will therefore exploit not only 
spectral but also spatial prior information for detecting objects and materials. 
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Figure 2: A Spectra of computed endmember (solid line) vs Muscovite sample 
spectra from the USGS data base library. Note we show only part of the spectrum 
since the discriminating features are located only between band 172 and 220. B 
Computed endmember (solid line) vs Kaolinite sample spectra from the USGS data 
base library. C Abundances for Kaolinite and Muscovite for three regions (lighter 
pixels represent higher abundance). Region 1 and region 2 have similar abundances 
for Kaolinite and Muscovite, while region 3 contains more Muscovite. 
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Abstract 

We incorporate prior knowledge to construct nonlinear algorithms 
for invariant feature extraction and discrimination. Employing a 
unified framework in terms of a nonlinear variant of the Rayleigh 
coefficient, we propose non-linear generalizations of Fisher's dis­
criminant and oriented PCA using Support Vector kernel functions . 
Extensive simulations show the utility of our approach. 

1 Introduction 

It is common practice to preprocess data by extracting linear or nonlinear features. 
The most well-known feature extraction technique is principal component analysis 
PCA (e.g. [3]). It aims to find an orthonormal, ordered basis such that the i-th 
direction describes as much variance as possible while maintaining orthogonality to 
all other directions. However, since PCA is a linear technique, it is too limited to 
capture interesting nonlinear structure in a data set and nonlinear generalizations 
have been proposed, among them Kernel PCA [14], which computes the principal 
components of the data set mapped nonlinearly into some high dimensional feature 
space F. 
Often one has prior information, for instance, we might know that the sample is 
corrupted by noise or that there are invariances under which a classification should 
not change. For feature extraction, the concepts of known noise or transformation 
invariance are to a certain degree equivalent, i.e. they can both be interpreted as 
causing a change in the feature which ought to be minimized. Clearly, invariance 
alone is not a sufficient condition for a good feature, as we could simply take the 
constant function. What one would like to obtain is a feature which is as invariant 
as possible while still covering as much of the information necessary for describing 
the particular data. Considering only one (linear) feature vector wand restricting 
to first and second order statistics of the data one arrives at a maximization of the 
so called Rayleigh coefficient 

(1) 
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where w is the feature vector and Sf, SN are matrices describing the desired and 
undesired properties of the feature , respectively (e.g. information and noise). If S/ 
is the data covariance and SN the noise covariance, we obtain oriented PCA [3J . 
If we leave the field of data description to perform supervised classification, it is 
common to choose S / as the separability of class centers (between class variance) 
and SN to be the within class variance. In that case , we recover the well known 
Fisher Discriminant [7J. The ratio in (1) is maximized when we cover much of 
the information coded by S/ while avoiding the one coded by SN . The problem is 
known to be solved, in analogy to PCA, by a generalized symmetric eigenproblem 
S/w = >"SNW [3], where>.. E ~ is the corresponding (biggest) eigenvalue. 
In this paper we generalize this setting to a nonlinear one. In analogy to [8, 14J 
we first map the data via some nonlinear mapping <l> to some high-dimensional fea­
ture space F and then optimize (1) in F . To avoid working with the mapped data 
explicitly (which might be impossible if F is infinite dimensional) we introduce sup­
port vector kernel functions [11], the well-known kernel trick. These kernel functions 
k(x , y) compute a dot product in some feature space F , i.e. k(x , y) = (<l>(x)· <l>(y)) . 
Formulating the algorithms in Fusing <l> only in dot products , we can replace any 
occurrence of a dot product by the kernel function k. Possible choices for k which 
have proven useful e.g. in Support Vector Machines [2] or Kernel PCA [14J are Gaus­
sian RBF, k(x , y) = exp( -llx - yI12/c), or polynomial kernels , k(x , y) = (x· y)d , 
for some positive constants c E ~ and dEN, respectively. 
The remainder of this paper is organized as follows: The next section shows how to 
formulate the optimization problem induced by (1) in feature space. Section 3 con­
siders various ways to find Fisher's Discriminant in F; we conclude with extensive 
experiments in section 4 and a discussion of our findings. 

2 Kernelizing the Rayleigh Coefficient 

To optimize (1) in some kernel feature space F we need to find a formulation which 
uses only dot products of <l>-images. As numerator and denominator are both scalars 
this can be done independently. Furthermore, the matrices S/ and SN are basically 
covariances and thus the sum over outer products of <l>-images. Therefore, and due 
to the linear nature of (1) every solution W E F can be written as an expansion in 
terms of mapped training datal, i.e. 

l 

W = L Cti<l>(Xi). (2) 
i=l 

To define some common choices in F let X = {Xl , .. . ,xe} be our training sample 
and, where appropriate, Xl U X2 = X , Xl n X2 = 0, two subclasses (with I Xi I = £i). 
We get the full covariance of X by 

1 1 
C = f L (<l>(x) - m)(<l>(x) - m)T with m = f L <l>(x) , (3) 

~EX ~EX 

I SB and Sw are operators on a (finite-dimensional) subspace spanned by the CP(Xi ) (in 
a possibly infinite space). Let w = VI + V2, where VI E Span(CP(Xi) : i = 1, .. . , f) and 
V2 1. Span(CP(xi) : i = 1, ... , f) . Then for S = Sw or S = SB (which are both symmetric) 

(w , Sw) ((VI + V2) , S(VI + V2)) 
((VI + V2)S, VI) 

(VI ,SVI) 

As VI lies in the span of the cp(Xi) and S only operates on this subspace there exist an 
expansion of w which maximizes J(w) . 
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which could be used as Sf in oriented Kernel PCA. For SN we could use an estimate 
of the noise covariance, analogous to the definition of C but over mapped patterns 
sampled from the assumed noise distribution. The standard formulation of the 
Fisher discriminant in F, yielding the Kernel Fisher Discriminant (KFD) [8] is 
given by 

Sw = L L (cJ>(x) - mi)(cJ>(x) - mdT and SB = (m2 - mt}(m2 - ml)T, 
i=I,2 xEX; 

the within-class scatter Sw (as S N), and the between class scatter S B ( as Sf). Here 
mi is the sample mean for patterns from class i. 
To incorporate a known invariance e.g. in oriented Kernel PCA, one could use the 
tangent covariance matrix [12], 

1 
T = ft2 L (cJ>(x) - cJ>(£tx))(cJ>(x) - cJ>(£tx))T for some small t> O. (4) 

:IlEX 

Here £t is a local I-parameter transformation. T is a finite difference approximation 
t of the covariance of the tangent of £t at point cJ>(x) (details e.g. in [12]). Using 
Sf = C and SN = T in oriented Kernel PCA, we impose invariance under the local 
transformation £t. Crucially, this matrix is not only constructed from the training 
patterns X. Therefore, the argument used to find the expansion (2) is slightly 
incorrect . Neverthless, we can assume that (2) is a reasonable approximation for 
describing the variance induced by T. 
Multiplying either of these matrices from the left and right with the expansion (2), 
we can find a formulation which uses only dot products. For the sake of brevity, we 
only give the explicit formulation of (1) in F for KFD (cf. [8] for details) . Defining 
(I-'i)j = t L:IlEXi k(xj,x) we can write (1) for KFD as 

J(a) = (aTI-') 2 aTMa 
aTNa aTNa' (5) 

where N = KKT - Li=1,2fil-'iI-'T, I-' = 1-'2 - 1-'1 ' M = I-'I-'T, and Kij = k(xi,xj). 
The results for other choices of Sf and S N in F as for the cases of oriented kernel 
PCA or transformation invariance can be obtained along the same lines. Note that 
we still have to maximize a Rayleigh coefficient. However, now it is a quotient in 
terms of expansion coefficients a, and not in terms of w E F which is a potentially 
infinite-dimensional space. Furthermore, it is well known that the solution for this 
special eigenproblem is in the direction of N-1 (1-'2 - 1-'1) [7), which can be solved 
using e.g. a Cholesky factorization of N. The projection of a new pattern x onto 
w in F can then be computed by 

l 

(w· cJ>(x)) = LQik(xi'x). (6) 
i=1 

3 Algorithms 

Estimating a covariance matrix with rank up to f from f samples is ill-posed. Fur­
thermore, by performing an explicit centering in F each covariance matrix loses one 
more dimension, i.e. it has only rank f - 1 (even worse, for KFD the matrix N has 
rank f - 2). Thus the ratio in (1) is not well defined anymore, as the denomina­
tor might become zero. In the following we will propose several ways to deal with 
this problem in KFD. Furthermore we will tackle the question how to solve the 
optimization problem of KFD more efficiently. So far, we have an eigenproblem of 
size .e x .e. If .e becomes large this is numerically demanding. Reformulations of the 
original problem allow to overcome some of these limitations. Finally, we describe 
the connection between KFD and RBF networks. 
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3.1 Regularization and Solution on a Subspace 

As noted before, the matrix N has only rank £ - 2. Besides numerical problems 
which can cause the matrix N to be not even positive, we could think of imposing 
some regularization to control capacity in F. To this end, we simply add a mUltiple 
of the identity matrix to N, Le. replace N by NJ1. where 

NJ1. := N + /-LI. (7) 

This can be viewed in different ways: (i) for /-L > 0 it makes the problem feasible 
and numerically more stable as NJ1. becomes positive; (ii) it can be seen as decreas­
ing the bias in sample based estimation of eigenvalues (cf. [6)); (iii) it imposes a 
regularization on 110112, favoring solutions with small expansion coefficients. fur­
thermore, one could use other regularization type additives to N, e.g. penalizing 
IIwl12 in analogy to SVM (by adding the kernel matrix Kij = k(xi' Xj)). 
To optimize (5) we need to solve an £ x £ eigenproblem, which might be intractable 
for large £. As the solutions are not sparse one can not directly use efficient algo­
rithms like chunking for Support Vector Machines (cf. [13]). To this end, we might 
restrict the solution to lie in a subspace, Le. instead of expanding w by (2) we write 

(8) 
i=l 

with m < l. The patterns Zi could either be a subset of the training patterns X 
or e.g. be estimated by some clustering algorithm. The derivation of (5) does not 
change, only K is now m x £ and we end up with m x m matrices N and M. Another 
advantage is, that it increases the rank of N (relative to its size) although there 
still might be some need for regularization. 

3.2 Quadratic optimization and Sparsification 

Even if N has full rank, maximizing (5) is underdetermined: if 0 is optimal, then so 
is any multiple thereof. Since 0 T M 0 = (0 T J..L)2, M has rank one. Thus we can seek 
for a vector 0, such that oTNo is minimal for fixed OTJ..L (e.g. to 1). The solution 
is unique and we can find the optimal 0 by solving the quadratic optimization 
problem: 

(9) 

Although the quadratic optimization problem is not easier to solve than the eigen­
problem, it has an appealing interpretation. The constraint 0 T J..L = 1 ensures, that 
the average class distance, projected onto the direction of discrimination, is con­
stant, while the intra class variance is minimized, i.e. we maximize the average 
margin. Contrarily, the SVM approach [2] optimizes for a large minimal margin. 
Considering (9) we are able to overcome another shortcoming of KFD. The solu­
tions 0 are not sparse and thus evaluating (6) is expensive. To solve this we can 
add an h-regularizer >'110111 to the objective function, where>. is a regularization 
parameter allowing us to adjust the degree of sparseness. 

3.3 Connection to RBF Networks 

Interestingly, there exists a close connection between RBF networks (e.g. [9, 1)) and 
KFD. If we add no regularization and expand in all training patterns, we find that 
an optimal 0 is given by 0 = K- 1y, where K is the symmetric, positive matrix of 
all kernel elements k(xi' Xj) and y the ±1 label vector2. A RBF-network with the 

2To see this, note that N can be written as N = KDK where D = I -YIyT -Y2Y; has 
rank e - 2, while Yi is the vector of l/Vli's for patterns from class i and zero otherwise. 
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Banana 
B.Cancer 
Diabetes 
German 
Heart 
Image 
Ringnorm 
F.Sonar 
Splice 
Thyroid 
Titanic 
Twonorm 
Waveform 

RBF AB ABR SVM KFD 
10.8±O.06 12.3±O.07 10.9±0.04 1l.5±O.07 10.8±O.05 

27.6±0.47 30.4±0.47 26.5±0.45 26.o±O.4725.8±0.46 
24.3±O.19 26.5±O.23 23.8±O.18 23.5±0.17 23.2±O.16 
24.7±O.24 27.5±O.25 24.3±O.21 23.6±O.21 23.1±0.22 
17.6±O.33 20.3±O.34 16.5±O.35 16.0±O.33 16.1±0.34 
3.3±O.06 2.1±O.01 2.1±O.06 3.o±O.06 4.8±O.06 
1.7±O.02 1.9±O.03 1.6±0.01 1.7±O.01 1.5±O.01 

34.4±O.20 35.7±O.18 34.2±O.22 32.4±O.18 33.2±0.11 
10.o±O.10 10.1±O.05 9 .5±O.01 10.9±O.07 10.5±O.06 

4.5±O.21 4.4±O.22 4.6±O.22 4.8±O.22 4.2±O.21 
23.3±O.13 22.6±O.12 22.6±O.12 22.4±O.10 23.2±O.20 

2.9±O.03 3.0±O.03 2.1±O.02 3.0±O.02 2.6±O.02 
10.7±O.1l 10.8±O.06 9.8±O.08 9. 9± o. 04 9.9±O.04 

Table 1: Com­
parison between 
KFD, single 
RBF classifier, 
AdaBoost (AB), 
regul. Ada-
Boost (ABR) 
and SVMs (see 
text) . Best re­
sult in bold face, 
second best in 
italics . 

same kernel at each sample and fixed kernel width gives the same solution, if the 
mean squared error between labels and output is minimized. Also for the case of 
restricted expansions (8) there exists a connection to RBF networks with a smaller 
number of centers (cf. [4]) . 

4 Experiments 

Kernel Fisher Discriminant Figure 1 shows an illustrative comparison of the 
features found by KFD, and Kernel PCA. The KFD feature discriminates the two 
classes, the first Kernel PCA feature picks up the important nonlinear structure. 
To evaluate the performance of the KFD on real data sets we performed an extensive 
comparison to other state-of-the-art classifiers, whose details are reported in [8j.3 
We compared the Kernel Fisher Discriminant and Support Vector Machines, both 
with Gaussian kernel, to AdaBoost [5], and regularized AdaBoost [10] (cf. table 1). 
For KFD we used the regularized within-class scatter (7) and computed projections 
onto the optimal direction w E :F by means of (6). To use w for classification we 
have to estimate a threshold. This can be done by e.g. trying all thresholds between 
two outputs on the training set and selecting the median of those with the smallest 
empirical error, or (as we did here) by computing the threshold which maximizes the 
margin on the outputs in analogy to a Support Vector Machine, where we deal with 
errors on the trainig set by using the SVM soft margin approach. A disadvantage 
of this is, however , that we have to control the regularization constant for the slack 
variables. The results in table 1 show the average test error and the standard 

If K has full rank, the null space of D , which is spanned by Yl and Y2' is the null space 
of N . For a = K-1 Y we get aT N a = 0 and aT J.£ =I O. As we are free to fix the constraint 
aT J.£ to any positive constant (not just 1), a is also feasible. 

3The breast cancer domain was obtained from the University Medical Center, 
Inst. of Oncology, Ljubljana, Yugoslavia. Thanks to M. Zwitter and M. Sok­
lic for the data. All data sets used in the experiments can be obtained via 
http://www.first.gmd.de/-raetsch/ . 

Figure 1: Comparison of feature 
found by KFD (left) and first 
Kernel PCA feature (right). De­
picted are two classes (informa­
tion only used by KFD) as dots 
and crosses and levels of same 
feature value. Both with polyno­
mial kernel of degree two, KFD 
with the regularized within class 
scatter (7) (/1 = 10-3 ) . 
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deviation of the averages' estimation, over 100 runs with different realizations of 
the datasets. To estimate the necessary parameters, we ran 5-fold cross validation 
on the first five realizations of the training sets and took the model parameters to 
be the median over the five estimates (see [10] for details of the experimental setup). 

Using prior knowledge. A toy example (figure 2) shows a comparison of Ker­
nel PCA and oriented Kernel PCA, which used S[ as the full covariance (3) and 
as noise matrix SN the tangent covariance (4) of (i) rotated patterns and (ii) along 
the x-axis translated patterns. The toy example shows how imposing the desired 
invariance yields meaningful invariant features. 
In another experiment we incorporated prior knowledge in KFD. We used the USPS 
database of handwritten digits, which consists of 7291 training and 2007 test pat­
terns, ~ach 2?6 .dimensional gray scale ima~es of the digits 0 ... 9: We use? the 
regulanzed withm-class scatter (7) (p, = 10- ) as SN and added to It an multiple A 
of the tangent covariance (4), i.e. SN = NJj + AT. As invariance transformations we 
have chosen horizontal and vertical translation, rotation, and thickening (cf. [12]), 
where we simply averaged the matrices corresponding to each transformation. The 
feature was extracted by using the restricted expansion (8), where the patterns Zi 

were the first 3000 training samples. As kernel we have chosen a Gaussian of width 
0.3·256, which is optimal for SVMs [12]. For each class we trained one KFD which 
classified this class against the rest and computed the 10-class error by the winner­
takes-all scheme. The threshold was estimated by minimizing the empirical risk on 
the normalized outputs of KFD. 
Without invariances, i.e. A = 0, we achieved a test error of 3.7%, slightly better than 
a plain SVM with the same kernel (4.2%) [12]. For A = 10-3 , using the tangent 
covariance matrix led to a very slight improvement to 3.6%. That the result was not 
significantly better than the corresponding one for KFD (3.7%) can be attributed 
to the fact that we used the same expansion coefficients in both cases. The tangent 
covariance matrix, however, lives in a slightly different subspace. And indeed, a 
subsequent experiment where we used vectors which were obtained by clustering a 
larger dataset, including virtual examples generated by the appropriate invariance 
transformation, led to 3.1 %, comparable to an SVM using prior knowledge (e.g. [12]; 
best SVM result 2.9% with local kernel and virtual support vectors). 

5 Conclusion 

In the task of learning from data it is equivalent to have prior knowledge about 
e.g. invariances or about specific sources of noise. In the case of feature extraction, 
we seek features which are sufficiently (noise-) invariant while still describing in­
teresting structure. Oriented PCA and, closely related, Fisher's Discriminant, use 
particularly simple features, since they only consider first and second order statis­
tics for maximizing the Rayleigh coefficient (1). Since linear methods can be too 
restricted in many real-world applications, we used Support Vector Kernel functions 
to obtain nonlinear versions of these algorithms, namely oriented Kernel PCA and 
Kernel Fisher Discriminant analysis. 
Our experiments show that the Kernel Fisher Discriminant is competitive or in 

Figure 2: Comparison of first 
features found by Kernel PCA 
and oriented Kernel PCA (see 
text); from left to right: KPCA, 
OKPCA with rotation and 
translation invariance; all with 
Gaussian kernel. 
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some cases even superior to the other state-of-the-art algorithms tested. Interest­
ingly, both SVM and KFD construct a hyperplane in :F which is in some sense 
optimal. In many cases, the one given by the solution w of KFD is superior to 
the one of SVMs. Encouraged by the preliminary results for digit recognition, we 
believe that the reported results can be improved, by incorporating different invari­
ances and using e.g. local kernels [12]. 
Future research will focus on further improvements on the algorithmic complexity 
of our new algorithms, which is so far larger than the one of the SVM algorithm, 
and on the connection between KFD and Support Vector Machines (cf. [16, 15]) . 
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