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A wavelet basis selection procedure is presented for wavelet re­
gression. Both the basis and threshold are selected using cross­
validation. The method includes the capability of incorporating 
prior knowledge on the smoothness (or shape of the basis functions) 
into the basis selection procedure. The results of the method are 
demonstrated using widely published sampled functions. The re­
sults of the method are contrasted with other basis function based 
methods. 

1 INTRODUCTION 

Wavelet regression is a technique which attempts to reduce noise in a sampled 
function corrupted with noise. This is done by thresholding the small wavelet de­
composition coefficients which represent mostly noise. Most of the papers published 
on wavelet regression have concentrated on the threshold selection process. This 
paper focuses on the effect that different wavelet bases have on cross-validation 
based threshold selection, and the error in the final result. This paper also suggests 
how prior information may be incorporated into the basis selection process, and the 
effects of choosing a wrong prior. Both orthogonal and biorthogonal wavelet bases 
were explored. 

Wavelet regression is performed in three steps. The first step is to apply a discrete 
wavelet transform to the sampled data to produce decomposition coefficients. Next 
a threshold is applied to the coefficients. Then an inverse discrete wavelet transform 
is applied to these modified coefficients. 
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The basis selection procedure is demonstrated to perform better than other wavelet 
regression methods even when the wrong prior on the space of the basis selections 
is specified. 

This paper is broken into the following sections. The background section gives a 
brief summary of the mathematical requirements of the discrete wavelet transform. 
This section is followed by a methodology section which outlines the basis selection 
algorithms, and the process for obtaining the presented results. This is followed by 
a results section and then a conclusion. 

2 BACKGROUND 

2.1 DISCRETE WAVELET TRANSFORM 

The Discrete Wavelet Transform (DWT) [Daubechies, 92] is implemented as a series 
of projections onto scaling functions in L2 (R). The initial assumption is that the 
original data samples lie in the finest space Vo, which is spanned by the scaling 
function ,p E Vo such that the collection {,p( x -t) It E Z} is a Riesz basis of Vo . The 
first level of the dyadic decomposition then consists of projecting the data samples 
onto scaling functions which have been dilated to be twice as wide as the original 
,p. These span the coarser space V·- 1 : {,p(2x - 2t) It E Z}. The information that 
is lost going from the finer to coarser scale is retained in what is known as wavelet 
coefficients. Instead of taking the difference, the wavelet coefficients can be obtained 
via a projection operation onto the wavelet basis functions 'I/J which span a space 
known as Woo The projections are typically implemented using Quadrature Mirror 
Filters (QMF) which are implemented as Finite Impulse Response filters (FIR) . 
The next level of decomposition is obtained by again doubling the scaling functions 
and projecting the first scaling decomposition coefficients onto these functions . The 
difference in information between this level and the last one is contained in the 
wavelet coefficients for this level. In general , the scaling functions for level j and 
translationmmayberepresentedby: ,pj(t) = 2:::,}-,p(2- j t-m)wheretE [0, 2k-1J, 

k ~ 1, 1 ~ j ~ k, ° ~ m ~ 2k - j - 1. 

2.1.1 Orthogonal 

An orthogonal wavelet decomposition is defined such that the difference space Wj 
is the orthogonal complement of Vj in Vj +! : Wo..l Vo which means that the 
projection of the wavelet functions onto the scaling functions on a level is zero: 
('I/J,,pC -t)) = 0, t E Z 

This results in the wavelet spaces Wj with j E Z being all mutually orthogo­
nal. The refinement relations for an orthogonal decomposition may be written as: 
,p(x) = 2 Lk hk,p(2x - k) and 'I/J (x) = 2 Lk gk,p(2x - k). 

2.1.2 Biorthogonal 

Symmetry is as an important property when the scaling functions are used as in­
terpolatory functions. Most commonly used interpolatory functions are symmetric. 
It is well known in the subband filtering community that symmetry and exact re­
construction are incompatible if the same FIR filters are used for reconstruction 
and decomposition (except for the Haar filter) [Daubechies, 92]. If we are willing to 
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use different filters for the analysis and synthesis banks, then symmetry and exact 
reconstructior:: are possible using b~orthogonal wavelets. Biorthogonal wavelets have 
dual scaling 4> and dual wavelet 1/J functions . These generate a dual multiresolu­
tion analysis with subspaces ~ and TVj so that: l~ 1.. Wj and Vj 1.. Wj and the 
orthogonality conditions can now be written as: 

(¢, 1/J (. -l)) = ('¢,4>(- -l)) = 0 

(¢j,l,4>k,m) 

(-0j ,I,1/Jk,m) 

OJ-k ,OI-m for l,m,j,k E Z 

OJ-k,OI -m for l,m , j,k E Z 

where OJ - k = 1 when j = k, and zero otherwise. 

The refinement relations for biorthogonal wavelets can be written: 

4>(:::) = 2 L hk4>(2x - k) and 1/J(x) 2 L gk4>(2x - k) 
k k 

¢(x) 2 L hk¢(2x - k) and -0(x) 
k 

Basically, this means that the scaling functions at one level are composed of linear 
combinations of scaling functions at the next finer level. The wavelet functions at 
one level are also composed of linear combinations of the scaling functions at the 
next finer level. 

2.2 LIFTING AND SECOND GENERATION WAVELETS 

Swelden's lifting scheme [Sweldens, 95a] is a way to transform a biorthogonal wavelet 
decomposition obtained from low order filters to one that could be obtained from 
higher order filters (more FIR filter coefficients), without applying the longer filters 
and thus saving computations. This method can be used to increase the number 
of vanishing moments of the wavelet, or change the shape of the wavelet. This 
means that several different filters (i.e. sets of basis functions) may be applied with 
properties relevant to the problem domain in a manner more efficient than directly 
applying the filters individually. This is beneficial to performing a search over the 
space of admissible basis functions meeting the problem domain requirements. 

Swelden's Second Generation Wavelets [Sweldens , 95b] are a result of applying 
lifting to simple interpolating biorthogonal wavelets, and redefining the refinement 
relation of the dual wavelet to be: 

,¢(x) = ¢(2x - 1) - L ak¢(x - k) 
k 

where the ak are the lifting parameters. The lifting parameters may be selected to 
achieve desired properties in the basis functions relevant to the problem domain . 

Prior information for a particular application domain may now be incorporated into 
the basis selection for wavelet regression. For example, if a particular application 
requires that there be a certain degree of smoothness (or a certain number of van­
ishing moments in the baSiS), then only those lifting parameters which result in a 
number of vanishing moments within this range are used. Another way to think 
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about this is to form a probability distribution over the space of lifting parameters. 
The most likely lifting parameters will be those which most closely match one's 
intuition for the given problem domain. 

2.3 THRESHOLD SELECTION 

Since the wavelet transform is a linear operator the decomposition coefficients will 
have the same form of noise as the sampled data. The idea behind wavelet regression 
is that the decomposition coefficients that have a small magnitude are substantially 
representative of the noise component of the sampled data. A threshold is selected 
and then all coefficients which are below the threshold in magntiude are either set 
to zero (a hard threshold) or a moved towards zero (a soft threshold). The soft 
threshold'T]t(Y) = sgn(Y)(1 Y I -t) is used in this study. 

There are two basic methods of threshold selection: 1. Donoho 's [Donoho, 95] 
analytic method which relies on knowledge of the noise distribution (such as a 
Gaussian noise source with a certain variance); 2. a cross-validation approach (many 
of which are reviewed in [Nason, 96]). It is beyond the scope of this paper to review 
these methods. Leave-one-out cross-validation with padding was used in this study. 

3 METHODOLOGY 

The test functions used in this study are the four functions published by Donoho 
and Johnstone [Donoho and Johnstone, 94]. These functions have been adopted 
by the wavelet regression community to aid in comparison of algorithms across 
publications . 

Each function was uniformly sampled to contain 2048 points. Gaussian white noise 
was added so that the signal to noise ratio (SNR) was 7.0. Fifty replicates of each 
noisy function were created, of which four instantiations are depicted in Figure 1. 

The noise removal process involved three steps. The first step was to perform a 
discrete wavelet transform using a paticular basis. A threshold was selected for 
the resulting decomposition coefficients using leave-one-out cross validation with 
padding. 

The soft threshold was then applied to the decomposition. Next, the inverse wavelet 
transform was applied to obtain a cleaner version of the original signal. These steps 
were repeated for each basis set or for each set of lifting parameters. 

3.1 WAVELET BASIS SELECTION 

To demonstrate the effect of basis selection on the threshold found and the error 
in the resulting recovered signal, the following experiments were conducted. In the 
first trial two well studied orthogonal wavelet families were used: Daubechies most 
compactly supported (DMCS), and Symlets (8) [Daubechies, 92]. For the DMCS 
family, filters of order 1 (which corresponds to the Haar wavelet) through 7 were 
used. For the Symlets, filters of order 2 through 8 were used. For each filter, leave­
one-out cross-validation was used to find a threshold which minimized the mean 
square error for each of the 50 replicates for the four test functions. The median 
threshold found was then applied to the decomposit.ion of each of the replicates 
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for each test function. The resulting reconstructed signals are compared to the 
ideal function (the original before noise was added) and the Normalized Root Mean 
Square Error (NRMSE) is presented. 

3.2 INCORPORATING PRIOR INFORMATION: LIFTING 
PARAMETERS 

If the function that we are sampling is known to have certain smoothness proper­
ties, then a distribution of the admissible lifting coefficients representing a similar 
smoothness characteristic can be formed. However, it is not necessary to cautiously 
pick a prior. The performance of this method with a piecewise linear prior (the 
(2,2) biorthogonal wavelet of Cohen-Daubechies-Feauveau [Cohen, 92]) has been 
applied to the non-linear smooth test functions Bumps, Doppler, and Heavysin. 
This method has been compared with several standard techniques [Wheeler, 96]. 
The Smoothing Spline method (SS) [Wahba, 90] , Donoho's Sure Shrink method 
(SureShrink)[Donoho, 95], and an optimized Radial Basis Function Neural Network 
(RBFNN) . 

4 RESULTS 

In the first experiment, the procedure was only allowed to select between two well 
known bases (Daubechies most compactly supported and symmlet wavelets) with 
the desired filter order. Table 1 shows the filter order resulting in lowest cross­
validation error for each filter and function. The NRMSE is presented with respect 
to the original noise-free functions for comparison. As expected the best basis 
for the noisy blocks function was the piecewise linear basis (Daubechies, order 1) . 
The doppler, which had very high frequency components required the highest filter 
order. Figure 2 represents typical denoised versions for the functions recovered by 
the filters listed in bold in the table. 

The method selected the basis having similar properties to the underlying function 
without knowing the original function. When higher order filters were applied to 
the noisy Blocks data, the resulting NRMSE was higher. 

The basis selection procedure (labelled CV-Wavelets in Table 2) was compared with 
Donoho's SureShrink, Wahba's Smoothing Splines (SS), and an optimized RBFNN 
[Wheeler , 96]. The prior information specified incorrectly to the procedure to prefer 
bases near piecewise linear. The remarkable observation is that the method did 
better than the others as measured by Mean Square Error. 

5 CONCLUSION 

A basis selection procedure for wavelet regression was presented. The method was 
shown to select bases appropriate to the characteristics of the underlying functions. 
The shape of the basis was determined with cross-validation selecting from either a 
pre-set library of filters or from previously calculated lifting coefficients. The lifting 
coefficients were calculated to be appropriate for the particular problem domain. 
The method was compared for various bases and against other popular methods. 
Even with the wrong lifting parameters, the method was able to reduce error better 
than other standard algorithms. 
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Noisy Blocks Function Noisy Bumps Function 

Noisy Heavysin function Noisy Doppler function. 

Figure 1: Noisy Test Functions 

Recovered Blocks Function Recovered Bumps Function 

Recovered Heavysin function Recovered Doppler function. 

Figure 2: Recovered Functions 
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Table 1: Effects of Basis Selection 

Filter Median NRMSE Median NRMSE 
Function Order Family Thr. (MT) Using MT True Thr. using MTT 
Blocks 1 Daubechies 1.33 0.038 1.61 0.036 
Blocks 2 Symmlets 1.245 0.045 1.40 0.045 
Bumps 4 Daubechies 1.11 0.059 1.47 0.056 
Bumps 5 Symmlets 1.13 0.058 1.48 0.055 
Doppler 8 Daubechies 1.27 0.058 1.65 0.054 
Doppler 8 Symmlets 1.36 0.054 1.74 0.050 
Heavysin 2 Daubechies 1.97 0.039 2.17 0.038 
Reavysin 5 Symmlets 1.985 0.039 2.16 0.038 

Table 2: Methods Comparison Table of MSE 

Function SS Sure Shrink RBFNN CV -Wavelets 
Blocks 0.546 0.398 1.281 0.362 
Heavysin 0.075 0.062 0.113 0.051 
Doppler 0.205 0.145 0.287 0.116 
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