Exploring Unknown Environments with
Real-Time Search or Reinforcement Learning

Sven Koenig
College of Computing, Georgia Institute of Technology
skoenig @cc.gatech.edu

Abstract

Learning Real-Time A* (LRTA*) is a popular control method that interleaves plan-
ning and plan execution and has been shown to solve search problems in known
environments efficiently. In this paper, we apply LRTA* to the problem of getting to
a given goal location in an initially unknown environment. Uninformed LRTA* with
maximal lookahead always moves on a shortest path to the closest unvisited state,
that is, to the closest potential goal state. This was believed to be a good exploration
heuristic, but we show that it does not minimize the worst-case plan-execution time
compared to other uninformed exploration methods. This result is also of interest to
reinforcement-learning researchers since many reinforcement learning methods use
asynchronous dynamic programming, interleave planning and plan execution, and
exhibit optimism in the face of uncertainty, just like LRTA*.

1 Introduction

Real-time (heuristic) search methods are domain-independent control methods that inter-
leave planning and plan execution. They are based on agent-centered search [Dasgupta et
al., 1994; Koenig, 1996], which restricts the search to a small part of the environment that
can be reached from the current state of the agent with a small number of action executions.
This is the part of the environment that is immediately relevant for the agent in its current
situation. The most popular real-time search method is probably the Learning Real-Time
A* (LRTA*) method [Korf, 1990]. It has a solid theoretical foundation and the following
advantageous properties: First, it allows for fine-grained control over how much planning
to do between plan executions and thus is an any-time contract algorithm [Russell and Zil-
berstein, 1991]. Second, it can use heuristic knowledge to guide planning, which reduces
planning time without sacrificing solution quality. Third, it can be interrupted at any state
and resume execution at a different state. Fourth, it amortizes learning over several search
episodes, which allows it to find plans with suboptimal plan-execution time fast and then
improve the plan-execution time as it solves similar planning tasks, until its plan-execution
time is optimal. Thus, LRTA* always has a small sum of planning and plan-execution

1004 S. Koenig

Initially, u(s) = Oforall s € S. 1. Forall s € Siss: u(s) = oo.
1. 8current = Sstart. 2. Ifu(s) < oo forall s € Siss, then return.
2. If scurrent € G, then stop successfully. 3. 3'_ = one-of arg minses,, ,:u(s)=co
3. Generate a local search space Siss C S with MiNae A(s) t(suce(s, a)).
Scurrent € Sies and Siss NG = Q. 4. If mjnaeﬁ{a") u(succ(‘s!. G)) = oo, then
4. Update u(s) for all s € S, (Figure 2). rctu‘rn. ' !
5. a := one-of arg MiNae A(s,urrent) 5. u(s’) = 1 + minge a(s) u(suce(s’,a)).
u(succ(Scurrent, @)). 6. Goto 2.
6. Execute action a.
7. Scurrent = 3ucc(3currenh G). Flgure 2: Value-UpdaIe Step
8. If scurrent € Siss, thengoto 5.
9. Goto2.

Figure 1: Uninformed LRTA*

time, and it minimizes the plan-execution time in the long run in case similar planning tasks
unexpectedly repeat. This is important since no search method that executes actions before
it has solved a planning task completely can guarantee to minimize the plan-execution time
right away.

Real-time search methods have been shown to be efficient alternatives to traditional search
methods in known environments. In this paper, we investigate real-time search methods
in unknown environments. In such environments, real-time search methods allow agents
to gather information early. This information can then be used to resolve some of the
uncertainty and thus reduce the amount of planning done for unencountered situations.

We study robot-exploration tasks without actuator and sensor uncertainty, where the sensors
on-board the robot can uniquely identify its location and the neighboring locations. The
robot does not know the map in advance, and thus has to explore its environment sufficiently
to find the goal and apath toit. A variety of methods can solve these tasks, including LRTA*.
The proceedings of the AAAI-97 Workshop on On-Line Search [Koenig et al., 1997] give
a good overview of some of these techniques. In this paper, we study whether uninformed
LRTA* is able to minimize the worst-case plan-execution time over all state spaces with the
same number of states provided that its lookahead is sufficiently large. Uninformed LRTA*
with maximal lookahead always moves on a shortest path to the closest unvisited state, that
is, to the closest potential goal state — it exhibits optimism in the face of uncertainty [Moore
and Atkeson, 1993]. We show that this exploration heuristic is not as good as it was believed
to be. This solves the central problem left open in [Pemberton and Korf, 1992] and improves
our understanding of LRTA*. Our results also apply to learning control for tasks other than
robot exploration, for example the control tasks studied in [Davies et al., 1998]. They are
also of interest to reinforcement-learning researchers since many reinforcement learning
methods use asynchronous dynamic programming, interleave planning and plan execution,
and exhibit optimism in the face of uncertainty, just like LRTA* [Barto et al., 1995;
Kearns and Singh, 1998].

2 LRTA*

We use the following notation to describe LRTA*: S denotes the finite set of states of the
environment, Sytqr+ € S the start state, and) # G C S the set of goal states. The number
of statesis n := |S|. A(s) # @ is the finite, nonempty set of actions that can be executed in
state s € S. succ(s, a) denotes the successor state that results from the execution of action
a € A(s) in state s € S. We also use two operators with the following semantics: Given

Exploring Unknown Environments 1005

a set X, the expression “one-of X" returns an element of X according to an arbitrary rule.
A subsequent invocation of “one-of X can return the same or a different element. The
expression “arg ming¢ x f(z)” returns the elements # € X that minimize f(z), that is, the
set {z € X|f(z) = mingex f(2')}.

We model environments (topological maps) as state spaces that correspond to undirected
graphs, and assume that it is indeed possible to reach a goal state from the start state. We
measure the distances and thus plan-execution time in action executions, which is reasonable
if every action can be executed in about the same amount of time. The graph is initially
unknown. The robot can always observe whether its current state is a goal state, how many
actions can be executed in it, and which successor states they lead to but not whether the
successor states are goal states. Furthermore, the robot can identify the successor states
when it observes them again at a later point in time. This assumption is realistic, for
example, if the states look sufficiently different or the robot has a global positioning system
(GPS) available.

LRTA* learns a map of the environment and thus needs memory proportional to the number
of states and actions observed. It associates a small amount of information with the states
in its map. In particular, it associates a u-value u(s) with each state s € S. The u-values
approximate the goal distances of the states. They are updated as the search progresses and
used to determine which actions to execute. Figure 1 describes LRTA*: LRTA* first checks
whether it has already reached a goal state and thus can terminate successfully (Line 2). If
not, it generates the local search space S;,, C S (Line 3). While we require only that the
current state is part of the local search space and the goal states are not [Barto et al., 1995],
in practice LRTA* constructs S;,, by searching forward from the current state. LRTA* then
updates the u-values of all states in the local search space (Line 4), as shown in Figure 2.
The value-update step assigns each state its goal distance under the assumption that the
u-values of all states outside of the local search space correspond to their correct goal
distances. Formally, if u(s) € [0, co] denotes the u-values before the value-update step and
i(s) € [0, c0] denotes the u-values afterwards, then @(s) = 1 4 minge 4(,) #(succ(s, a))
forall s € Si,, and i(s) = u(s) otherwise. Based on these u-values, LRTA* decides which
action to execute next (Line 5). It greedily chooses the action that minimizes the u-value of
the successor state (ties are broken arbitrarily) because the u-values approximate the goal
distances and LRTA* attempts to decrease its goal distance as much as possible. Finally,
LRTA* executes the selected action (Line 6) and updates its current state (Line 7). Then, if
the new state is still part of the local search space used previously, LRTA* selects another
action for execution based on the current u-values (Line 8). Otherwise, it iterates (Line 9).
(The behavior of LRTA* with either minimal or maximal lookahead does not change if
Line 8 is deleted.)

3 Plan-Execution Time of LRTA* for Exploration

In this section, we study the behavior of LRTA* with minimal and maximal lookaheads in
unknown environments. We assume that no a-priori heuristic knowledge is available and,
thus, that LRTA* is uninformed. In this case, the u-values of all unvisited states are zero
and do not need to be maintained explicitly.

Minimal Lookahead: The lookahead of LRTA* is minimal if the local search space con-
tains only the current state. LRTA* with minimal lookahead performs almost no planning
between plan executions. Its behavior in initially known and unknown environments is
identical. Figure 3 shows an example.

Let gd(s) denote the goal distance of state s. Then, according to one of our previous results,
uninformed LRTA* with any lookahead reaches a goal state afteratmost) _, . ¢ gd(s) action

executions [Koenig and Simmons, 1995]. Since), . ¢ gd(s) < E:‘__fnl i=1/2n%*—1/2n,

1006 S. Koenig

goal Q = visited vertax (known not to be a goal vertex)
O =unvisited (but) vertex (unk ether it is a goal vertax)
. = current vertex of the robot
C% = u-value of the vertex
start == = pdge traversed in at least one direction
—— = untraversed edge
- = local search space
LRATA" with minimal lookahead:

Figure 3: Example

Vg A Vg Vnz Y
v Va Vg Vna Va1
start all edge lengths are one goal

Figure 4: A Planar Undirected Graph

uninformed LRTA* with any lookahead reaches a goal state after O (n?) action executions.

This upper bound on the plan-execution time is tight in the worst case for uninformed
LRTA* with minimal lookahead, even if the number of actions that can be executed in any
state is bounded from above by a small constant (here: three). Figure 4, for example, shows
a rectangular grid-world for which uninformed LRTA* with minimal lookahead reaches a
goal state in the worst case only after ©(n?) action executions. In particular, LRTA* can
traverse the state sequence that is printed by the following program in pseudo code. The
scope of the for-statements is shown by indentation.

for i := n-3 downto n/2 step 2
for j := 1 to 1 step 2
print j
for j := i+l downto 2 step 2
print j
for i := 1 to n-1 step 2
print i

In this case, LRTA* executes 3n%/16 — 3/4 actions before it reaches the goal state (for
n > 2 withn mod 4 = 2). For example, for n = 10, it traverses the state sequence s, 53,
§s, 57, 58, 56, 54, 52, 51, 53, S5, S¢, 54, 52, 51, 53, §5, 57, and sg.

Maximal Lookahead: As we increase the lookahead of LRTA*, we expect that its plan-
execution time tends to decrease because LRTA* uses more information to decide which

Exploring Unknown Environments 1007

branches of the order in which the remaining
length 3 unvisited vertices are visited

branches of
length 0

1 2 QN3 4 5 W\s 7 g :p.
o Vo V1 V2 V3 V4 Vs Vg V7 Vg VoVioV11ViV1d14/15V16V17V1aV10Vatia1VaVaaVodVasVag Va7=Ymm

T

LRTA" is now here start

0 = visited vertex = = gdge traversed in at least one direction
0 =unvisited vertex —— = untraversed edge

Figure 5: Another Planar Undirected Graph (m = 3)

action to execute next. This makes it interesting to study LRTA* with maximal lookahead.

The lookahead of LRTA* is maximal in known environments if the local search space
contains all non-goal states. In this case, LRTA* performs a complete search without
interleaving planning and plan execution and follows a shortest path from the start state to
a closest goal state. Thus, it needs gd(s,¢qr¢) action executions. No other method can do
better than that.

The maximal lookahead of LRTA* is necessarily smaller in initially unknown environments
than in known environments because its value-update step can only search the known part of
the environment. Therefore, the lookahead of LRTA* is maximal in unknown environments
if the local search space contains all visited non-goal states. Figure 3 shows an example.

Uninformed LRTA* with maximal lookahead always moves on a shortest path to the
closest unvisited state, that is, to the closest potential goal state. This appears to be a
good exploration heuristic. [Pemberton and Korf, 1992] call this behavior “incremental
best-first search,” but were not able to prove or disprove whether this locally optimal
search strategy is also globally optimal. Since this exploration heuristic has been used
on real mobile robots [Thrun et al., 1998], we study how well its plan-execution time
compares to the plan-execution time of other uninformed exploration methods. We show
that the worst-case plan-execution time of uninformed LRTA* with maximal lookahead in
unknown environments is (é’-&g; n) action executions and thus grows faster than linearly
in the number of states n. It follows that the plan-execution time of LRTA* is not optimal
in the worst case, since depth-first search needs a number of action executions in the worst
case that grows only linearly in the number of states.

Consider the graph shown in Figure 5, that is a variation of a graph in [Koenig and Smirnov,
1996]. It consists of a stem with several branches. Each branch consists of two parallel
paths of the same length that connect the stem to a single edge. The length of the branch is
the length of each of the two paths. The stem has length m™ for some integer m > 3 and
consists of the vertices V0, V1, -y U For each integer i with 1 < i < m there are m™~*
branches of length E};‘l m’ each (including branches of length zero). These branches
attach to the stem at the vertices v; . for integers j; if ¢ is even, then 0 < 5 < mm-t - 1,
otherwise 1 < j < m™~*, There is one additional single edge that attaches to vertex v.

1008 S. Koenig

vmm is the starting vertex. The vertex at the end of the single edge of the longest branch is
the goal vertex. Notice that the graph is planar. This is a desirable property since non-planar
graphs are, in general, rather unrealistic models of maps.

Uninformed LRTA* with maximal lookahead can traverse the stem repeatedly forward and
backward, and the resulting plan-execution time is large compared to the number of vertices
that are necessary to mislead LRTA* into this behavior. In particular, LRTA* can behave
as follows: It starts at vertex v,, and traverses the whole stem and all branches, excluding
the single edges at their end, and finally traverses the additional edge attached to vertex
vp, as shown in Figure 5. At this point, LRTA* knows all vertices. It then traverses the
whole stem, visiting the vertices at the ends of the single edges of the branches of length 0.
It then switches directions and travels along the whole stem in the opposite direction, this
time visiting the vertices at the end of the single edges of the branches of length m, and so
forth, switching directions repeatedly. It succeeds when it finally uses the longest branch
and discovers the goal vertex. To summarize, the vertices at the ends of the branches are
tried out in the order indicated in Figure 5. The total number of edge traversals is Q(m™+1)
since the stem of length m™ is traversed m + 1 times. To be precnsc, the total number of
edge traversals is (m™*3 +3m™+2 —8m™+! 4 2m? —m+ 3)/gm —2m+1). It holds that
n = ©(m™)sincen = (3m™+2 —5m™+! —m™ 4+ m™ =1 42m? —2m+2)/(m?—2m+1).
This implies that m = Q wlg"lo's‘n) since it holds that, for £ > 1 and all sufficiently large m
(to be precise: m withm > k)

logy (m™ 1 _ 1 _ 1 ik
Togy, logk[m’“)— Togy Togy (m ") — Togy mFlogy loge m — Ly ToggTogp m = T g~
lo;ktm’“)

mlogy m mloge m

= m.

Put together, it follows that the total number of edge traversals is Q(m™*!) = Q(mn) =

Q(ﬁfggﬁ- n). (We also performed a simulation that confirmed our theoretical results.)

The graph from Figure 5 can be modified to cause LRTA* to behave similarly even if the
assumptions of the capabilities of the robot or the environment vary from our assumptions
here, including the case where the robot can observe only the actions that lead to unvisited
states but not the states themselves.

4 Future Work

Our example provided a lower bound on the plan-execution time of uninformed LRTA*
with maximal lookahead in unknown environments. The lower bound is barely super-linear
in the number of states. A tight bound is currently unknown, although upper bounds are
known. A trivial upper bound, for example, is O(n?) since LRTA* executes at most n — 1
actions before it visits another state that it has not visited before and there are only n states
to visit. A tighter upper bound follows directly from [Koenig and Smirnov, 1996]. It was
surprisingly difficult to construct our example. It is currently unknown, and therefore a
topic of future research, for which classes of graphs the worst-case plan-execution time of
LRTA* is optimal up to a constant factor and whether these classes of graphs correspond to
interesting and realistic environments. It is also currently unknown how the bounds change
as LRTA* becomes more informed about where the goal states are.

5 Conclusions

Our work provides a first analysis of uninformed LRTA* in unknown environments. We
studied versions of LRTA* with minimal and maximal lookaheads and showed that their

Exploring Unknown Environments 1009

worst-case plan-execution time is not optimal, not even up to a constant factor. The worst-
case plan-execution time of depth-first search, for example, is smaller than that of LRTA*
with either minimal or maximal lookahead. This is not to say that one should always prefer
depth-first search over LRTA* since, for example, LRTA* can use heuristic knowledge to
direct its search towards the goal states. LRTA* can also be interrupted at any location and
get restarted at a different location. If the batteries of the robot need to get recharged during
exploration, for instance, LRTA* can be interrupted and later get restarted at the charging
station. While depth-first search could be modified to have these properties as well, it would
lose some of its simplicity.

Acknowledgments

Thanks to Yury Smimov for our collaboration on previous work which this paper extends. Thanks also
to the reviewers for their suggestions for improvements and future research directions. Unfortunately,
space limitations prevented us from implementing all of their suggestions in this paper.

References

(Barto et al., 1995) Barto, A.; Bradtke, S.; and Singh, S. 1995. Leamning to act using real-time
dynamic programming. Artificial Intelligence 73(1):81-138.

(Dasgupta et al., 1994) Dasgupta, P.; Chakrabarti, P.; and DeSarkar, S. 1994. Agent searching in a
tree and the optimality of iterative deepening. Artificial Intelligence 71:195-208.

(Davies et al., 1998) Davies, S.; Ng, A.; and Moore, A. 1998. Applying online search techniques
to reinforcement learning. In Proceedings of the National Conference on Artificial Intelligence.
753-760.

(Kearns and Singh, 1998) Keamns, M. and Singh, S. 1998. Near-optimal reinforcement leaming in
polynomial time. In Proceedings of the International Conference on Machine Learning. 260-268.

(Koenig and Simmons, 1995) Koenig, S. and Simmons, R.G. 1995. Real-time search in non-
deterministic domains. In Proceedings of the International Joint Conference on Artificial In-
telligence. 1660-1667.

(Koenig and Smirnov, 1996) Koenig, S. and Smimov, Y. 1996. Graph leaming with a nearest neigh-
bor approach. In Proceedings of the Conference on Computational Learning Theory. 19-28.

(Koenig et al., 1997) Koenig, S.; Blum, A.; Ishida, T.; and Korf, R., editors 1997. Proceedings of
the AAAI-97 Workshop on On-Line Search. AAAI Press.

(Koenig, 1996) Koenig, S. 1996. Agent-centered search: Situated search with small look-ahead. In
Proceedings of the National Conference on Artificial Intelligence. 1365.

(Korf, 1990) Korf, R. 1990. Real-time heuristic search. Artificial Intelligence 42(2-3):189-211.

(Moore and Atkeson, 1993) Moore, A. and Atkeson, C. 1993. Prioritized sweeping: Reinforcement
learning with less data and less time. Machine Learning 13:103-130.

(Pemberton and Korf, 1992) Pemberton, J. and Korf, R. 1992. Incremental path planning on graphs
with cycles. In Proceedings of the International Conference on Artificial Intelligence Planning
Systems. 179-188.

(Russell and Zilberstein, 1991) Russell, S. and Zilberstein, S. 1991. Composing real-time systems.
In Proceedings of the International Joint Conference on Artificial Intelligence. 212-217.

(Thrun et al., 1998) Thrun, S.; Biicken, A.; Burgard, W.; Fox, D.; Frohlinghaus, T.; Hennig, D.;
Hofmann, T.; Krell, M.; and Schmidt, T. 1998. Map learning and high-speed navigation in rhino.
In Kortenkamp, D.; Bonasso, R.; and Murphy, R., editors 1998, Artificial Intelligence Based
Mobile Robotics: Case Studies of Successful Robot Systems. MIT Press. 21-52.

