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Abstract 

Clustering is impor ta nt in m any fields including m anufac tlll'ing , 
bio log~' , fin ance , a nd astronomy. l\Iixturp models arp a popula r ap­
proach due to their st.atist.ical found a t.ions, and EM is a very pop­
ular l1wthocl for fillding mixture models. EM, however, requires 
lllany accesses of the dat a , a nd thus h as been dismissed as imprac­
t ical (e .g. [9]) for data mining of enormous dataset.s. We present a 
nt' \\· a lgorit.hm, baspd on thp l1lultiresolution ~.'Cl- trees of [5] , which 
dramatically reelucps the cost of EtlI-baspd clusteriug , wit.h savings 
rising linearl:; wit.h the number of datapoints. Although prespnt.pd 
lwre for maximum likplihoocl estimation of Gaussian mixt.ure mod­
f' ls , it. is also applicable to non-(~aussian models (provided class 
densit.ies are monotonic in Mahalanobis dist.ance), mixed categori­
cal/ nUllwric clusters. anel Bayesian nwthocls such as Antoclass [1] . 

1 Learning Mixture Models 

In a Gaussian mixture lllod f' l (e.g. [3]) , we aSSUI1W t.hat d ata points {Xl .. . XR} ha\'p 
bef'n gelw r<lt ecl inclepencl e lltl~ by the following process. For each X I in turn, natlll' f' 
begius by randomly picking a class, c}' from a discrf' t e set of classf's {('I . . ' Cs }. 

T lwn nat m e draws X I from an .II-dimensiona l Gallss ia n whosf' m ea n fI i and cO\'a ri-
a llce ~i depend 0 11 the class, Thus we have . 

where 8 denotps all the parameters of the mixture: the class probabilities Vi (wlwre 
Vi = P(Cj 18)) , the class centers fl j and the class covariances ~j' 

Tlw job of a mixture m odel learn er is to find a good estimate of t.he modeL and 
Expectation MaximizRtion (EM) , also known a::l "Fuzzy ~'-mea n::l", i::l a popular 
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algorit.hm for doing so. TIlt' Ith iteration of El\I begins \vith an estimatp (/ of tllP 
model , and ends with all il11prO\'ed pstimate ll+1. 'Write 

(2) 

E;\I iteratps over parh point.-class combination, comput.ing for pach dass Cj and Pnch 
datapoint Xi, thp pxtent to which Xi is "owned" by Cj. The ownership is simply 
tl'i) = P(Cj I Xi, (/). Throughout this paper \\iP will use thp following notation : 

(lij P(Xi I Cj Jl) 

Wlj P(Cj I Xi , (i) = (/ ijJ!.dLt~ l (/iI .. )JJ .. (by Bayes ' Rule) 

Then tl1P new value of thp cpntroid, J.ij' of the jt.b rlass in thp npw modpl (l+l is 
sim ply tilt' \\"Pightpel t11pan of all the da t<'l point:,; , using the values {LV 1), W~j, . .. lIB.i } 

as t.he weights. A similar weight.eel procedure gives the new est.imat.e's of the class 
probabilities and the dass cov<'Iriances: 

sw· p' f- __ .J 

.I R 
1 R 

tt} f- --~ U:i}Xi 
. s\\" L . 

.I i= l 

w)wre S\\'j = L~= l tl;ij . Thus each iteration of EM visit:-; ewry datapoint-rla:,;:,; pair. 
meaning "YR evaluations of a l\l-dilllensional Ganssian, and so needing O(J/.!.SR) 
arithnwtic operations ]wr iteration. This paper aims to reduce that cost. 

An IIIrkd-tree (Multiresolution J~D-tree), introduced in [2] and developed further 
in [5], is a binary tree in which each node is associateel wit.h a subset of the elata­
points. The root node owns all the datapoints. Each non-leaf-noelp has t \VO rhilelren. 
defineel by a splitting dimension NO.SPLITOIM and a splitting valup NO.sPLITVAL. The 
two children divide their parent's datapoints between them , with the left child ow­
ing those dat.apoillts that are strictly less than the splitting \"alue in the splitting 
dimension, and t he right child owning tllP remaindpr of the parent's cia t apoinb: 

Xi E NO.LEFT <=} x i[No.sPLITDIM] < l\O.SPLITVAL anel Xi E No (4) 

Xi E NO.RIGHT <=} xdNo .SPLlTOIM] 2: NO .SPLITVAL and Xi E ND (.5) 

The distinguishing feature of mrkcl-trees is that their nodes contain the following: 

• NO.NUMPOINTS: The number of points owned by No (equivalently, the av­
erage density in No). 

• NO.CENTROID: The centroid of the points owned by No (equivalently, the 
fir:st 1lI0ment of the density below ND) . 

• No.(·ov: The cov<'lriance of the points owned by No (equivalently. the second 
lI10lllent. of the clensi t.y below No). 

• NO. HYPERRECT: The bounding hyper-rectangle of the points below No 

\\"1' construct. mrkcl-trpes top-down, ident.ifying tilt' bounding box of th e current. 
node , and splitting in t.hf' center of t.he widest dimension. A node is declared to be 
a leaL and is left unsplit , if the widest dimension of its bounding box is :s SOIllP 
threshold, JIB IV. If MB W is zero, t.hen all leaf nodes denote singleton or coincident 
points , the tree bas O(R) nodes and so requires O(M~ R) memory, and (with some 
care) the cons t ruction co~t is O(",J'2 R+ M R log R). In practice , we :-;et MB IT' t.o 1 % 
of t he range of the datapoint components . The tree size and construction thus cost 
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cons icle ra bl," If'sS t.l Ja n these bOllnc\s b f'ca use in c\ f' nsf' reg io ns , tin~' leaf nod es werf' 
a ble t o summarize clozf'lls of cl at apo ints , No t f' t oo th a t. t he cost of trf'e-builcling is 
a m ol' t izecl - th f' tree must I)f' built. o nef' , .ve t E~I pf'l' fo rms m allY it era tio ns , 

To p erform an it.eratio n ofE1\1 with tllf' IIIrkd- tl'f'e , we ca ll t.he functio n l\L\K ESTATS 
(d f'scril)f'c\ be low) on t. h f' root of t he trf'f', \L-\K ESn,Ts ( No , tl) o u t puts :i N va lues: 
(S\\'l , S\\':! , ' , , SWx , SWX 1, ' , ,S"'X ,V, SWXX 1, , , ,S\\,XX N ) wh f' re 

I::: Wij 

x , E NO 
I::: tl ' ij X , 

x, E NO 
SWXXj = ((j ) 

X , E NO 

TI1f' res ults of 1\ 1A K ESTATS (RooT) pro \'idf' sU ffi c if' nt. stat isti c8 to COIl St rue t et + 1: 

]I) f--- S \\' ,iI R (I) 

If l\ [AK ESTATS is ca llf' cl on a If'a f no c\ f' , \ \'P s impl)' co mpu tf', fo r f'aeh j, 

S 

te) = P (c) I x,et ) = P(x I t' j ,(l)p(c) I et)/ I::: P (x I Ck , et )p (Ck l et) (8) 
1.' =1 

wherf' x = NO, ('ENTROID , a nd when ' a ll the it f' lI1s in tllf' right ha nd f' qu at ion 
a r f' eas il~ ' comput.ed , \Vf' thell r f't urn S\\'j = Il 'j X ="O,NTJ 1\ IPOI NTS, s \\,x) = 
Il 'j x NO,N TI1\!POINTS x X a nd s \\'xx) = Il'j x );O,f\ Tli\!POINTS x No,co\' , The rea­
SOil Wf' call d o this is th a t, if the If'a f noclf' is W J') ' sm a ll, t.llf' rf' willlw lit tle va ri atlon 

in te l ) fo r th f' po int s o \\'l lf'd by t. h f' nod f' a nd so , fo r f'xa lll p lf' L: Il',j X i ~ 11'.1 LX" 

III t he eXpf'r ill lf' llts be low \\'e li se \'e r)' t iny leaf nod f' s , f' lIsurin g acc urac,\', 

If \IAKEST.-\TS is ca lled on a no n-If'a f-n odf', it (' a n easily computf' its a ns \Vf' r by 
r f'c llrsivf' l~' ca lling l\ IAK ESTATs on its two chilclrf' n and t.hf' n l'f' turning the :-:UIll of 
tl lf' t\Vo Sf' ts of a ns \\'f'l'S, In genf'r a l. th a t is f'xact ly how we will procef'd, If t h a t 
was th f' end of the sto ry , W P would haw little computa tion a l improvel1lf' nt o \'er 
conventional E1\l, b ecRuse onf' pass wo uld fully t. r al'E'rsf' t he trf'f', which conta ins 
O(R) n od es, doing O( S .11:!) \\'o rk p er node , 

\Ve will win if we evf'l' spot that. a t so m f' int f' rmedi ate nod f' , \\'f' can jll '1111 t , i ,f', 

e\'a lua t f' th f' node as if it were a If'a f. witho u t. sf' al't'hing i t.s d f' scenden ts , but witho u t. 
introduc ing significant e rro r int o tllf' compu tation, 

T o do t hi:-: , \\, f' will CO tllput f' , fo r f'ac h j , the minimulIl a nd m aximum U'ij th a t any 
po int ins idp th f' nod f' could h a \'f' , This pl'ocf'cl lll'f' is m ore complf' x than in tllf' casf' 
o f l o" all~ ' weight pd rf'g l'eSSiOll [.5] , 

\\'e wi;-;h t o co mput f' u',~nln and I{'Tax for each j , wh ere u'Tll1 is a lo\\' f' l' b ound 

on minxi E NO /i 'i) and u'T <lX is a n uppf' r b ound on m a xx , E :\O (I'i,/ , T his is h ard 

b ecause wjl11 11 is de t ermin ed Bot only by t Ilf' m ea n and co\'ariance o f tl lf' jt.h d as;-; 

but also t he o th f' r cla:,ses , For f'x ample , in Figur f' l. ti '3:! is approximatel~' 0, 5 , but 
it would bf' much la rger if Cl werf' fmtller to t lr f' If'ft , o r h ad a thinlle r ('o \'a ri a nce, 

Blit l'f' nw mber th a t tl lf' ti'ij' S ar f' d f' fin f' cl in terms of (l ij'S, t hus: lI ' i) 

(/ 'j j ),1/ L: ~:~1 (/,h lih, \Vf' ((/11 pu t bounds o n t.l lP (li j ' :, rela tive ly <-,a sil~' , [t sim ply 
rpquire:, th at 1'0 1' f'a ('h j \\, f' co mpllt f' l tl lf' closf' ;-; t a nd fUl'tl lf's t po int fro m I' ,; within 

I C omput ing Ihbt' point:-. require,., non-t ri\'ia l compu t.a t iona l geoIlletr,\' lwcau"e the co­
\'a ria lJ ce III a t rice:, are n ot llece""arily axis-a ligned , There i" n o space h ere fo r del a iJ,." 
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Figure 1: The rectangle denote" a h.\"lwr­
rectangle in the mrkd-tn'e. The !"mall 

"quares denote datapoint.s "owlled" h.\· 

t lIe node. Suppo:se t.here are ju:;( l \\'0 

claf-se!" , with the given means, and co-

valiances depicteel by the ellipse:;. Small 

circles indicate the locations wit.hin the 

rMinimizer of a 2 node for which (/) (i.e. P(.r I c))) would 

-----"----------e> be extremized. 

NO .HYPERHECT, using the Mahalanobis cli::otancp MHD(x, x') = (x-x/)T~.j I (x-x'). 

Call tllf':';P short.pst and furtllf'st squarpcl distancps illHDI11I11 and JIHD l11 ax . Then 

(D) 

is a lowpr bound for minx, END (lij , with a similar dpfinition of aTflX . Thpn write 

nlln Wi' 
x, E NO ) 

min (aij}Jj/L((ikPh'l = min (aij}Jj/(Clij}Jj + LouiN)) 
x, E NO x, E NO . 

k kt.l 

> ajlllnpj /(ClT ll1 pj + L ar1axPk) = W.Tll1 
h·tj 

wlwrp tl'T II1 is ulli' lo\\,pr bound. There is a similar definition for tl'.TflX. The iLlc'qual­
it.\' i;-, proved b)' elenH'ntary algebra, and requires that all qllantitips are positiw 
(which thpy are). vVe can often tight.en thp bounds further using a procedure that 
pxploits the fact. t.hat. 2:: j Wij = 1, but space does not permit further discussion. 

\ \,p will prune if wjllll1 anel tl'Tax are close for all j. 'Vha t should be the criterion for 

clospnpss? The first. idea that springs to mind is: Prune if V j . (wj11aX - wj11lI1 < t). 
But such a simplp critprioll is not suitable: some classps may be accumulating very 
largp sums of weights, whilst others may bp accumulating vpry small Sllms. The 
largp-sllll1-weight clasl>ps can t.olerate far looser bounds than the small-sum-weight 
da.sses. Hprp, then, is a more satisfactory pruning critf'l'ion : Pnll1P ifVj . (wr ax -

Il',Tll1 < nC,;otal) where wjotal is the tot al weight. awarded to class j o\,pr tlw entire 

dataset , and T is SOI1lP small constant. Sadl~' , w.ioTal is not. known ill advan('e, but 

happily we can find a lower bound on u,.~otal of wrfar + NO.NTTMPOINTS x wr lI1 , where 

Lt'jofar is the total weight awarded to cla.ss j so fa.r during the sear('h over the kcl-trpp. 

The algorithm as c1(>scribed so far performs c1ivide-and-conquer-\vith-cut.offs on the 
spt of clatapoints. In addition, it is possiblp to achieve an extra ac(,pleration by 
nwallS of diviclp and conquer on the class ('enters. Suppose there wpre N = 100 
classps . Illstpad of considering all 100 classps at all Bodes, it is frequelltly possible 
t.o clPlPrmine at SOI1W node that t.he maximum possi ble \\,pight. w,Tux for some class j 

is less thau a minisculp fraction of tllf' minimull1 pos:-;ible weight u'tln for sonlf' other 
da:-,:-, "'. Thlb if we 0\'<"1' find that in some nocle wr ax < Autlll where /\ = 10-..( . 
tlLell class ('j is rel1lowc\ from ('onsicleration from all clescendpnt:-; ofthp Clll'l'pnt node. 
FrpC[uPlltly this m ea llS that nea r tllf' tree's Ipa\'ps, only a tiny fraction of thp dassps 
compete for o\\'nership of the datapoints, and thil> lea.ds to large time savings. 
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2 Results 
\~'e havp subj ed pd this approach to llumprous i\ Iont.e-Ca rlo empirical tests . Herp 
\VP report 0 11 one ::::p t of Ruch tpsts . created with the fo llowing m eth odology. 

• We ra nd omly gPllerate a mixt ure of Ga u::::sia ns in 1\J -dimensio ll a l ::::pace (by 
ciefa nlt .11 = 2). The number of Gaussians , N is , by default, :20. Each 
(~ a u ~~i a n h a ~ a m ean ly ing within the unit hypercube, and a covaria nce 
m a trix randomly generated with diagonal elem ents between 0 up to 40' :! 

(by defa ul t, 0' = 0.05) and random non-diagonal elem ent.s t ha t ensure sym­
m etric positive defini tene:-;s. T hus the dist ance from a Ga ussian center t.o 
it.s l -::::t. andard-elevia tion contour is of thp order of magni tude of 0'. 

• \\lp r andomly generate a d ataset fro111 t he mixt ure m odel. The number of 
point:::: , R , i~ (by default) 160,000 . Figure :2 show:::: a typical generated set 
of Ga u::::~i a ns a nel clat apoinb. 

• We then build an I/Irkd- t ree for the d ataset. , and record the m em ory re­
quirPlllents a nd real time to build (on a Pent.ium :200Mhz, in seconds). 

• We thpn run Ei\I on the d ata. Ei\I begin:::: wit.h an entirely different set of 
(~ auss i a n:-;, randomly ge nera ted using the sam e procedure. 

• \Vp run 5 it era tions of the convent ional EM algori thm and the new mrkd­
t rpp-ba ::::pd algorithm. TllP new algorit.hm uses a defa ult value of 0 .1 for T . 

\Vp record thp rpa l t ime (ill seconds ) for each itera tion of each a lgorithm, 

a nd wp a lso record t he m ean log-likelihood score (1/ R) L~= l log P(Xi I rl) 
for t. he tth m odpl fo r both algorithm:::: . 

F igurf' :) :-;ho \\' :-; t.he nodes t.ha t arp visit.pd during It eration :2 of the Fas t. EM wi th 
~y = (j cla::::ses . Ta blp 1 shows t.he d ptailecl resul ts a:::: the experimental param eters are 
varied. Speedups vary from 8-fold to 1000-fold . There are 100-fold speedup:" even 
wit.h very wiele (non-loca l) G aussians. In othpI' experiments, simil a r resul t s were also 
obt ain f> c\ on l'ea l data~ets t ha t disobe.y t llP Gaussian assumption . There too, we find 
one- a.nd two-order-of-m agnitude computa tional advantages with indis t. inguish able 
::::tat.i :-; tical bphayi or (no bett.pr anclno worse ) compared with convention al E i\ I. 

R e al Data: Preliminary experiments in applying this to large d atasets h ave been 
encouraging. For thrpe-dinlPnsional galaxy clustering with 800 ,000 galaxies and 
lUOO elustns , tradition al El\1 needed :3·5 minutes per iteration, while t he mrkd-trees 
rpquired only H SPcOl1(ls . With l. () million galaxies, t.raditional EM needed 70 
minutes a nd IIIrkd-trpPs required 14 seconds . 

3 Conclusion 

Thp use of vari able resolution structures for clustering has been suggested in m a ny 
pl aces (P.g . [7 ,8 , 4, !:l]). The BIRCH system , in pa rt.icular , is popular in the da t.abase 
community'. BIRCH is, howpver. Iln9blp to identify seconci-mOl11Pllt features of clus­
t,pr :; (such as Il on-n xis-aligned spread). Our co ntributions h ave been the use of a 
ll1ulti-l'f'solut.ion approach, with associa tf>d computationa l benefi t s , and the intro­
duction of a n pffi cient a lgori t hm t hat leaves tllP sta tistica l aspects of mixture m odel 
estil1la tion uncil angpd. The growth of rpcpnt d a. t. a mining algorihms tha t are /l ot 

based on st.a t is tica l foundations has frec!pnt.ly been j ust.ified by the following state­
lllent: U:; illg st ate-of- t hp- Cl rt sta tistical techniques is too expensive because such 
t pchniqu ps were not dpsignpel to handle largp da t asets and becom e intraeta bJe with 
mi Ili on:'; of d a t a points . In earlier work we prO\ iclpd ev idence t.ha t t.his sta tement may 
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Effect of Number of Datapoints, R: 
As R increases so Joes the computational aJvantage, 
essentiall~' linearly. The tree-build time (11 seconds 
at worst) is a tiny cost compared with even just one 
iteration of Regular EM (2385 seconds, on the big 
dataset.) FinalSlowSecs: 238.5. FinalFastSecs: 3. 

Effect of Number of Dimensions, A/f: 
As with many J.:d-tree algorithms. the benefits decline 
as dimensionality increases, yet even in 6 dimensions, 
there is an 8-fold advantage. FinalSlowSecs: 2742. 
FinalFastSecs: 310.2.5. 

EHect of N umber of Classes, N: 
Conventional EM slows down linearly with the num­
ber of classes. Fast EM is clearly sublinear, with a 
70-fold speedup even with 320 classes. Note how the 
tree size grows. This is because more classes mean 
a more uniform data distribution and fewer data­
points "sharing" tree leaves. FinalSlowSecs: 9278 . 
FinalFastSecs: 143.:3. 
Effect of Tau, T: 
The larger T, the more willing we are to prune during 
the tree search, anJ thus the faster we search, but the 
less accurately we mirror EM's statistical behavior. 
InJeeJ when T is large, the discrep<\llcy In the log 
likelihood is relatively large. FinalSlowSecs: .584 . .5 . 
FinalFastSecs: .) 

Effect of Standard Deviation, 17 : 
Even with very wide Gaussians, with wide support. , 
we still get large savings . The nodes that are pruned 
in these cases are rarely nodes with one class owning 
all the probability, but instead are nodes where all 
classes have non-zero, but little varying, probability. 
FinalSlowSecs: 58.1. FinalFastSecs: 4.75. 
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Table 1: In all the above results all parameters were held at their default values except 
for one, which varied as shown in the graphs. Each graph shows the factor by which 
the new E1.'1 is faster than the conventional EM. Below each graph is the time to build 

the mrkd-tree in seconds and the number of nodes in the t.ree. Note that although the 

tree builJing cost is not included in the speedup calculation, it is negligibl~ in all cases, 

especially considering that only one tree build is needed for all EM iterations. Does the 
approximate nature of this process result in inferior clusters'? The answer is no : the 

quality of clusters is indistinguishable between the slow and fast methods when measureJ 
by log-likelihood and when viewed visually. 
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Figure 2: A typical set of Gaus­
sians generated by our random pro­
cedure. They in t.urn generate the 
datasets upon which we compare 
the performance of the old and new 
implementations of EM. 

,[J 

Figure 3: The ellipses show the model 8t at the start 
of an EM iteration. The rectangles depict the mrkd­
tree nodes that were pruned. Observe larger rectan­
gles (and larger savings) in areas with less variation 
in class probabilities. Note this is not merely able to 
only prune where the data density is low. 

not apply for locally weighted regression [.5] or Bayesian network learning [6], and 
we hope this paper provides some evidence that it also needn't apply to clustering . 
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