Very Fast EM-based Mixture Model

Clustering using Multiresolution kd-trees

Andrew W. Moore
Robotics Institute, C'arnegie Mellon University
Pittsburgh, PA 15213, awm @cs.cimu.edu

Abstract

Clustering is important in many fields including manufacturing.
biology, finance, and astronomy. Mixture models are a popular ap-
proach due to their statistical foundations, and EM is a very pop-
ular method for finding mixture models. EM, however, requires
many accesses of the data, and thus has been dismissed as imprac-
tical (e.g. [9]) for data mining of enormous datasets. We present a
new algorithni, based on the multiresolution kd-trees of [5], which
dramatically reduces the cost of EM-based clustering. with savings
rising linearly with the number of datapoints. Although presented
here for maximum likelihood estimation of Gaussian mixture mod-
els, it is also applicable to non-(iaussian models (provided class
densities are monotonic in Mahalanobis distance), mixed categori-
cal/numeric clusters. and Bayesian methods such as Autoclass [1].

1 Learning Mixture Models

In a Gaussian mixture mnodel (e.g. [3]), we assume that datapoints {x, ...xp} have
been generated mdependently by the following process. For each x, in turn, nature
begius by randomly picking a class, ¢,. from a discrete set of classes {c;...cx}.
Then nature draws x, from an M-dimensional GGaussian whose mean y; and covari-
ance YU; depend on the class. Thus we have

P(x; | ¢j.8) ~ ((2m) M 1S;11) 747 exp(==(x; — ;) TS; 7 ki — 1)) (1)

where 8 denotes all the parameters of the mixture: the class probabilities p; (where

p; = P(cj | 8)). the class centers #; and the class covariances L;.

The job of a mixture model learner is to find a good estimate of the model, and
Expectation Maximization (EM), also known as “Fuzzy k-means™, is a popular
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algorithm for doing so. The fth iteration of EM begins with an estimate 8" of the
model, and ends with an improved estimate 8'7!. Write

8" =(pr...pNfyee e pN S0 SN) (2)

EM iterates over each point-class combination, computing for each class ¢; and each
datapoint x;, the extent to which x; is “owned™ by ¢;. The ownership is simply
wi; = P(e; | x;.8"). Throughout this paper we will use the following notation:

gi; = P(x;]e¢;.¢)

w,; = Plej|x:i.0")= a,-j;{,-/Z}?.:l airpr(by Bayes™ Rule)

Then the new value of the centroid, p;, of the jth class in the new model 0'*! is
simply the weighted mean of all the datapoints, using the values {w;,, ws;. ... wg;}
as the weights. A similar weighted procedure gives the new estimates of the class
probabilities and the class covariances:

R R
SW; 1 o
pie TR e e LU Sj o wyj(xi — ) (xi = 15)° (3)

i=1 i=1
where swj = 57 w;;. Thus each iteration of EM visits every datapoint-class pair.
meaning .\ R evaluations of a A/-dimensional Gaussian, and so needing O(M-\'R)
arithmetic operations per iteration. This paper aims to reduce that cost.

An mrkd-tree (Multiresolution KD-tree). introduced in [2] and developed further
in [5], is a binary tree in which each node is associated with a subset of the data-
points. The root node owns all the datapoints. Each non-leaf-node has two children.
defined by a splitting dimension Np.spLiTpiv and a splitting value Np.spLiTvaL. The
two children divide their parent’s datapoints between them. with the left child ow-
ing those datapoints that are strictly less than the splitting value in the splitting
dimension, and the right child owning the remainder of the parent’s datapoints:

X; € ND.LEFT & x,-[ND.SPLITDm-I] < ND.spLITVAL and x; € Np ()

X; € ND.RIGHT ¢ X;[ND.SPLITDIM] > ND.sPLITVAL and x; € Np (5)

The distinguishing feature of mrkd-trees is that their nodes contain the following:

e Np.nuMpoINTs: The number of points owned by Np (equivalently, the av-
erage density in Np).

e NpD.cENTROID: The centroid of the points owned by Np (equivalently, the
first moment of the density below Np).

e Np.cov: The covariance of the points owned by Np (equivalently. the second
moment of the density below Nbp).

e NpD.HYPERRECT: The bounding hyper-rectangle of the points below Np

We construct. mrkd-trees top-down, identifying the bounding box of the current
node, and splitting in the center of the widest dimension. A node is declared to be
a leaf, and is left unsplit, if the widest dimension of its bounding box is < some
threshold, MBIV. If A/BW is zero, then all leaf nodes denote singleton or coincident
points, the tree has O(R) nodes and so requires O(M?R) memory, and (with some
care) the construction cost is Q(M>R+ M Rlog R). In practice, we set MBI to 1%
of the range of the datapoint components. The tree size and construction thus cost
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cousiderably less than these bounds because in dense regions, tiny leaf nodes were
able to summarize dozens of datapoints. Note too that the cost of tree-building is
amortized—the tree must be built once, yvet EM performs many iterations.

To perform an iteration of EN with the mrkd-tree. we call the function NMAKESTATS
(described below) on the root of the tree. MAKESTATS(ND.8') outputs 3N values:
(SWi,SWu, .. .SWa,SWX],...SWXy,SWXX;....SWXXx) where

SWi= Y wyy . SWX;= Y wix, . SWXX; = Z wixix! (6)

X, € ND X, € ND X, € ND
The results of MAKESTATS(R00T) provide sufficient statistics to construct 6' T

P SWi/R O p; & SWX/sW, L T (SWXX/sw;) — ,(.'J-p? (7)
If MAKESTATS is called on a leaf node, we simply compute, for each j,

N
@ = Ple, | %.0') = P(x | ¢;.8)P(c; | 8)/ S P(x| cx.6')Pci | 8")  (8)

k=1
where X = NbD.cENTROID, and where all the items in the right hand equation
are easily computed. We then return SW; = w; x ND.NUMPOINTS, SWX; =
wj x ND.NUMPOINTS X x and SWXX; = w; x ND.NUMPOINTs X ND.cov. The rea-

son we can do this is that, if the leaf node is very small, there will be little variation
in w,, for the points owned by the node and so. for example Z wyiX; W, ZX,A
In the experiments below we use very tiny leaf nodes, ensuring accuracy.

If MAKESTATS is called on a non-leaf-node, it can easily compute its answer by
recursively calling NMAKESTATS on its two children and then returning the sum of
the two sets of answers. In general. that is exactly how we will proceed. If that
was the end of the story, we would have little computational improvement over
conventional EM, because one pass would fully traverse the tree, which contains
O(R) nodes, doing O(.NV M) work per node.

We will win if we ever spot that. at some intermediate node. we can prune. i.e.
evaluate the node as il it were a leaf, without searching its descendents. but without
introducing significant error into the computation.

To do this, we will compute, for each j, the mininmim and maximum w;; that any
point inside the node could have. This procedure is more complex than in the case
of locally weighted regression [5].

We wish to compute )™ and w"™ for each j. where w™ is a lower bound

on minx, ¢ Np w;; and W™ s an upper bound on maxy, ¢ xp wj,. This is hard
because w™ is determined not only by the mean and covariance of the jth class
but also the other classes. For example. in Figure 1. w3y is approximately 0.5. but

it would be much larger if ¢; were further to the left, or had a thinner covariance.
But remember that the wi;’s are defined in terms of «;;’s, thus: wy; =

iy Y pey @hps. We can put bounds on the a;;’ relatively easily. [t simply
requires that for each j we compute! the closest and furthest point from g; within

'Computing these points requires non-trivial computational geometry hecause the co-
variance maltrices are not necessarily axis-aligned. There is no space here for details.
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Figure 1: The rectangle denotes a hyper-

b, rectangle in the mrkd-tree. The small

Maximizer of a; squares denote datapoints “owned™ by

7Fo—4 the node. Suppose there are just two
" N _Minimizer of a , classes, with the given means, and co-
variances depicted by the ellipses. Small
circles indicate the locations within the

Maximizer of a, '(‘M'"‘mi’-e' ofa; node for which a, (i.e. P(z|¢,)) would

L ] ’5

be extremized.

Np.uyPERRECT, using the Mahalanobis distance MHD(x, x') = (x—x )T“ (x—x').
("all these shortest and furthest squared distances MHD™" and MH m‘“. Then

@ = ((2m) |5 1) exp(— 2 MHD™™) (9)

is a lower bound for mink, € np @;;, with a similar definition of «"*. Then write

N n(lsil\luj Wi = mm (a“p,/ E aippr) = 111111 [aup“,/(a,,p, + E aipr))
e k#j
N 1 E : 1a% — M
2 (ejj]]nfj‘j/(f{l}'"npj + a};]. I.}I[‘ [[I n
ki
where w" is our lower bound. There is a similar definition for w™®*. The incyunal-

ity is proved by elementary algebra, and requires that all quantities are positive
(which they are). We can often tighten the bounds further using a procedure that
exploits the fact that Z;‘ w;j = 1, but space does not permit further discussion.

We will prune if " and w}'** are close for all j. What should be the criterion for
closeness? The ﬁnt idea tl]at springs to mind is: Prune if Vj . (@™ — w™ < ¢).
But such a simple criterion is not suitable: some classes may be accumulating very
large sums of weights, whilst others may be accumulating very small sums. The
large-sum-weight classes can tolerate far looser bounds than the small-sum-weight
classes. Here, then, is a more satisfactory pruning criterion: Prune if Vj . ("™ —
wit < T r‘:‘r”") where w} tofal is the total weight awarded to class j over the entire
dataset, and 7 is some ~>nmll constant. Sadly, w;"'“‘ is not known i advance, but
happily we can find a lower bound on n'jo”" of n-j“‘f“"+ ND.NUMPOINTS X (""", where
u';f""""' Is the total weight awarded to class j so far during the search over the kd-tree.
The algorithm as described so far performs divide-and-conquer-with-cutofls on the
set of datapoints. In addition, it is possible to achieve an extra acceleration by
means of divide and conquer on the class centers. Suppose there were N = 100
classes. Insteac of considering all 100 classes at all nodes, it is frequently possible
to determine at some node that the maximum possible weight w"** for some class j
1s less than a miniscule fraction of the minimum possible weight w"" for some other
class k. Thus if we ever find that in some node "™ < Awy™" where \ = 10~
then class ¢; is removed from consideration from all descendents of the current node.
Frequently this means that near the tree’s leaves, only a tiny fraction of the classes
compete for ownership of the datapoints, and this leads to large time savings.
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2 Results

We have subjected this approach to numerous Monte-Clarlo empirical tests. Here
we report on one set of such tests, created with the following methodology.

e \We randomly generate a mixture of Gaussians in Af-dimensional space (by
defanlt M = 2). The number of Gaussians, N is, by default, 20. Each
(vaussian has a mean lying within the unit hypercube, and a covariance
matrix randomly generated with diagonal elements between 0 up to 4¢>
(by default, o = 0.05) and random non-cdiagonal elements that ensure sym-
metric positive definiteness. Thus the distance from a Gaussian center to
its l-standard-deviation contour is of the order of magnitude of o.

e We rancdomly generate a dataset from the mixture model. The number of
points, R, is (by default) 160,000. Figure 2 shows a typical generated set
of Gaussians and datapoints.

e \We then build an mrkd-tree for the dataset, and record the memory re-
quirements and real time to build (on a Pentium 200Mhz, in seconds).

e We then run EM on the data. EM begins with an entirely different set of
(raussians, randomly generated using the same procedure.

e We run 5 iterations of the conventional EM algorithm and the new mrkd-
tree-based algorithm. The new algorithim uses a default value of 0.1 for 7.
We record the real time (in seconds) for each iteration of each algorithim,
and we also record the mean log-likelihood score (1/R) Zil log P(x; | 8%)
for the tth model for both algorithms.

Figure 3 shows the nodes that are visited during Iteration 2 of the Fast EM with
N = 6 classes. Table 1 shows the detailed results as the experimental parameters are
varied. Speecups vary from 8-fold to 1000-fold. There are 100-fold speedups even
with very wide (non-local) Gaussians. In other experiments, similar results were also
obtained on real datasets that disobey the GGaussian assumption. There too, we find
one- and two-order-of-magnitude computational advantages with indistinguishable
statistical behavior (no better and no worse) compared with conventional ENM.

Real Data: Preliminary experiments in applying this to large datasets have been
encouraging. For three-dimensional galaxy clustering with 800,000 galaxies and
1000 clusters, traditional EM needed 35 minutes per iteration, while the mrkd-trees
required only 13 seconds. With 1.6 million galaxies, traditional EM needed 70
minutes and mrkd-trees required 14 seconds.

3 Conclusion

The use of variable resolution structures for clustering has been suggested in many
places (e.g. [T, 8, 4, 9]). The BIRCH system, in particular, is popular in the database
community. BIRCH is, however. unable to identify second-moment features of clus-
ters (such as non-axis-aligned spread). Our contributions have been the use of a
multi-resolution approach, with associated computational benefits, and the intro-
duction of an efficient algorithm that leaves the statistical aspects of mixture model
estimation unchanged. The growth of recent data mining algorihms that are not
based on statistical foundations has freqently been justified by the following state-
ment: Using state-of-the-art statistical techniques is too expensive because such
techniques were not designed to handle large datasets and become intractable with
millions of datapoints. In earlier work we provided evidence that this statement may
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Effect of Number of Datapoints, R:

Ax R increases so does the computational advantage, '«
essentially linearly. The tree-build time {11 seconds E'.‘;::_
at worst) is a tiny cost compared with even just one “.
iteration of Regular EM (2385 seconds, on the big =~ —

dataset.) FinalSlowSecs: 2385. FinalFastSecs: 3. _ Momberofpoinie(nthousands)

BB gac NIAE SL N TR G RED LLINT e 5 TEE dATE

Effect of Number of Diménsions, M: .

As with many Ad-tree algorithms. the benefits decline i

as dimensionality increases, yet even in 6 dimensions, "

there is an 8-fold advantage. FinalSlowSecs: 2742. R
FinalFastSecs: 310.25. | ot ingite:
Effect of Number of Classes, N: i

Conventional EM slows down linearly with the num- 400

ber of classes. Fast EM is clearly sublinear, with a ¥

70-fold speedup even with 320 classes. Note how the oo

tree size grows. This is because more classes mean W=

a more uniform data distribution and fewer data- s 0 . a4 s o o
points “sharing” tree leaves. FinalSlowSecs: 9278, =« -~ o
FinalFastSecs: 143.3. o e
Effect of Tau, 7: Frd

The larger 7, the more willing we are to prune during  _

the tree search, and thus the faster we search, but the g

less accurately we mirror EM’s statistical behavior. s
Indeed when 7 is large, the discrepancy in the log
likelihood is relatively large. FinalSlowSecs: 584.5. = o
FinalFastSecs: 2. N LRy

Effect of Standard Deviation, o:

500

. . . . . 400

Even with very wide Gaussians, with wide support, s
we still get large savings. The nodes that are pruned g 200
in these cases are rarely nodes with one class owning 100

all the probability, but instead are nodes where all
classes have non-zero, but little varying, probability. =~~~ ‘seme
FinalSlowSecs: 583. FinalFastSecs: 4.75. T

0025 005 D1 02 04
algma

Table 1: In all the above results all parameters were held at their default values except
for one, which varied as shown in the graphs. Each graph shows the factor by which
the new EM is faster than the conventional EM. Below each graph is the time to build
the mrkd-tree in seconds and the number of nodes in the tree. Note that although the
tree building cost is not included in the speedup calculation, it is negligible in all cases,
especially considering that only one tree build is needed for all EM iterations. Does the
approximate nature of this process result in inferior clusters? The answer is no: the
quality of clusters is indistinguishable between the slow and fast methods when measured
by log-likelihood and when viewed visually.
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Figure 2: A typical set of Gaus- Figure 3: The ellipses show the model 8" at the start
sians generated by our random pro- of an EM iteration. The rectangles depict the mrkd-
cedure. They in turn generate the tree nodes that were pruned. Observe larger rectan-
datasets upon which we compare gles (and larger savings) in areas with less variation
the performance of the old and new in class probabilities. Note this is not merely able to
implementations of EM. only prune where the data density is low.

not apply for locally weighted regression [5] or Bayesian network learning [6], and
we hope this paper provides some evidence that it also needn’t apply to clustering.
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