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Abstract 

We investigate a probabilistic framework for automatic speech 
recognition based on the intrinsic geometric properties of curves. 
In particular, we analyze the setting in which two variables-one 
continuous (~), one discrete (s )-evolve jointly in time. We sup­
pose that the vector ~ traces out a smooth multidimensional curve 
and that the variable s evolves stochastically as a function of the 
arc length traversed along this curve. Since arc length does not 
depend on the rate at which a curve is traversed, this gives rise 
to a family of Markov processes whose predictions, Pr[sl~]' are 
invariant to nonlinear warpings of time. We describe the use of 
such models, known as Markov processes on curves (MPCs), for 
automatic speech recognition, where ~ are acoustic feature trajec­
tories and s are phonetic transcriptions. On two tasks-recognizing 
New Jersey town names and connected alpha-digits- we find that 
MPCs yield lower word error rates than comparably trained hidden 
Markov models. 

1 Introduction 

Variations in speaking rate currently present a serious challenge for automatic 
speech recognition (ASR) (Siegler & Stern, 1995). It is widely observed, for example, 
that fast speech is more prone to recognition errors than slow speech. A related ef­
fect, occurring at the phoneme level, is that consonants (l,re more frequently botched 
than vowels. Generally speaking, consonants have short-lived, non-stationary acous­
tic signatures; vowels, just the opposite. Thus, at the phoneme level, we can view 
the increased confusability of consonants as a consequence of locally fast speech. 
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Figure 1: Two variables-one continuous (x), one discrete (s )- evol ve jointly in 
time. The trace of s partitions the curve of x into different segments whose bound­
aries occur where s changes value. 

In this paper , we investigate a probabilistic framework for ASR that models vari­
ations in speaking rate as arising from nonlinear warpings of time (Tishby, 1990) . 
Our framework is based on the observation that acoustic feature vectors trace out 
continuous trajectories (Ostendorf et aI , 1996). We view these trajectories as mul­
tidimensional curves whose intrinsic geometric properties (such as arc length or 
radius) do not depend on the rate at which they are traversed (do Carmo, 1976). 
We describe a probabilistic model whose predictions are based on these intrinsic 
geometric properties and-as such-are invariant to nonlinear warpings of time. 
The handling of this invariance distinguishes our methods from traditional hidden 
Markov models (HMMs) (Rabiner & Juang, 1993). 

The probabilistic models studied in this paper are known as Markov processes on 
curves (MPCs). The theoretical framework for MPCs was introduced in an earlier 
paper (Saul , 1997), which also discussed the problems of decoding and parameter 
estimation. In the present work, we report the first experimental results for MPCs 
on two difficult benchmark problems in ASR. On these problems- recognizing New 
Jersey town names and connected alpha-digits- our results show that MPCs gen­
erally match or exceed the performance of comparably trained HMMs. 

The organization of this paper is as follows . In section 2, we review the basic 
elements of MPCs and discuss important differences between MPCs and HMMs. In 
section 3, we present our experimental results and evaluate their significance. 

2 Markov processes on curves 

Speech recognizers take a continuous acoustic signal as input and return a sequence 
of discrete labels representing phonemes, syllables, or words as output. Typically 
the short-time properties of the speech signal are summarized by acoustic feature 
vectors. Thus the abstract mathematical problem is to describe a multidimensional 
trajectory {x(t) It E [0, T]} by a sequence of discrete labels S1 S2 . . . Sn. As shown in 
figure 1, this is done by specifying consecutive time intervals such that s(t) = Sk 

for t E [tk-1, tk] and attaching the labels Sk to contiguous arcs along the trajectory. 
To formulate a probabilistic model of this process, we consider two variables-one 
continuous (x), one discrete (s )-that evolve jointly in time. Thus the vector x 
traces out a smooth multidimensional curve, to each point of which the variable s 
attaches a discrete label. 

Markov processes on curves are based on the concept of arc length. After reviewing 
how to compute arc lengths along curves, we introduce a family of Markov processes 
whose predictions are invariant to nonlinear warpings of time. We then consider 
the ways in which these processes (and various generalizations) differ from HMMs. 
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2.1 Arc length 

Let g(~) define a D x D matrix-valued function over x E RP. If g(~) is everywhere 
non-negative definite, then we can use it as a metric to compute distances along 
curves. In particular, consider two nearby points separated by the infinitesimal 
vector d~. We define the squared distance between these two points as: 

(1) 

Arc length along a curve is the non-decreasing function computed by integrating 
these local distances. Thus, for the trajectory x(t), the arc length between the 
points x(t!) and X(t2) is given by: 

f= l t2
dt [~Tg(x)i:]~, (2) 

tl 

where i: = it [~(t)] denotes the time derivative of~ . Note that the arc length defined 
by eq. (2) is invariant under reparameterizations of the trajectory, ~(t) -t ~(J(t)) , 
where f(t) is any smooth monotonic function of time that maps the interval [tl, t2] 
into itself. 

In the special case where g(~) is the identity matrix, eq. (2) reduces to the standard 
definition of arc length in Euclidean space. More generally, however, eq. (1) defines 
a non-Euclidean metric for computing arc lengths. Thus, for example, if the metric 
g(x) varies as a function of~, then eq. (2) can assign different arc lengths to the 
trajectories x(t) and x(t) + ~o, where ~o is a constant displacement. 

2.2 States and lifelengths 

We now return to the problem of segmentation, as illustrated in figure 1. We refer 
to the possible values of s as states. MPCs are conditional random processes that 
evolve the state variable s stochastically as a function of the arc length traversed 
along the curve of~. In MPCs, the probability of remaining in a particular state 
decays exponentially with the cumulative arc length traversed in that state. The 
signature of a state is the particular way in which it computes arc length. 

To formalize this idea, we associate with each state i the following quantities: (i) 
a feature-dependent matrix gi (x) that can be used to compute arc lengths, as in 
eq. (2); (ii) a decay parameter Ai that measures the probability per unit arc length 
that s makes a transition from state i to some other state; and (iii) a set of transition 
probabilities aij, where aij represents the probability that-having decayed out of 
state i-the variable s makes a transition to state j . Thus, aij defines a stochastic 
transition matrix with zero elements along the diagonal and rows that sum to one: 
aii = 0 and 2:j aij = 1. A Markov process is defined by the set of differential 
equations: 

d 1 1 

Pi \ [ . T ( ).]:1 ~ \ [ . T ( ) • ] :I dt = -/liPi X gi X X + L.J /ljpjaji ~ 9j x ~ , 
#i 

(3) 

where Pi(t) denotes the (forward) probability that s is in state i at time t, based 
on its history up to that point in time. The right hand side of eq. (3) consists of 
two competing terms. The first term computes the probability that s decays out 
of state i; the second computes the probability that s decays into state i. Both 
terms are proportional to measures of arc length, making the evolution of Pi along 
the curve of x invariant to nonlinear warpings of time. The decay parameter, Ai, 
controls the typical amount of arc length traversed in state i ; it may be viewed as 
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an inverse lifetime or-to be more precise-an inverse lifelength. The entire process 
is Markovian because the evolution of Pi depends only on quantities available at 
time t. 

2.3 Decoding 

Given a trajectory x(t), the Markov process in eq. (3) gives rise to a conditional 
probability distribution over possible segmentations, s(t). Consider the segmenta­
tion in which s(t) takes the value Sk between times tk-l and tk, and let 

fSk = jtk dt [XTgsk(X) X ]% 
tk-l 

(4) 

denote the arc length traversed in state Sk. By integrating eq. (3), one can show that 
the probability of remaining in state Sk decays exponentially with the arc length f Sk ' 
Thus, the conditional probability of the overall segmentation is given by: 

n n 

Pr[s,flx] = II ASke->'Sklsk II aSkSk+ll (5) 
k=l k=O 

where we have used So and Sn+1 to denote the START and END states of the Markov 
process. The first product in eq. (5) multiplies the probabilities that each segment 
traverses exactly its observed arc length. The second product multiplies the prob­
abilities for transitions between states Sk and Sk+l' The leading factors of ASk are 
included to normalize each state's distribution over observed arc lengths. 

There are many important quantities that can be computed from the distribution, 
Pr[ S Ix]. Of particular interest for ASR is the most probable segmentation: s* (x) = 
argmaxs,l {In Pr[s, fix]}. As described elsewhere (Saul, 1997), this maximization 
can be performed by discretizing the time axis and applying a dynamic programming 
procedure. The resulting algorithm is similar to the Viterbi procedure for maximum 
likelihood decoding (Rabiner & Juang, 1993). 

2.4 Parameter estimation 

The parameters {Ai, aij, gi (x)} in MPCs are estimated from training data to max­
imize the log-likelihood of target segmentations. In our preliminary experiments 
with MPCs, we estimated only the metric parameters, gi(X); the others were as­
signed the default values Ai = 1 and aij = 1/ Ii, where Ii is the fanout of state i. 
The metrics gi (x) were assumed to have the parameterized form: 

(6) 

where (ji is a positive definite matrix with unit determinant, and cI>i (x) is a non­
negative scalar-valued function of x. For the experiments in this paper, the form of 
cI>i(X) was fixed so that the MPCs reduced to HMMs as a special case, as described 
in the next section. Thus the only learning problem was to estimate the matrix 
parameters (ji. This was done using the reestimation formula: 

J ~xT 
(ji ~ C dt. T • 1 cI>i(x(t)), 

[x (ji-1X]"2 
(7) 

where the integral is over all speech segments belonging to state i, and the constant 
C is chosen to enforce the determinant constraint l(ji I = 1. For fixed cI>i (x), we 
have shown previously (Saul, 1997) that this iterative update leads to monotonic 
increases in the log-likelihood. 
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2.5 Relation to HMMs and previous work 

There are several important differences between HMMs and MPCs. HMMs param­
eterize joint distributions of the form: Pr[s, z] = Dt Pr[st+1lsd Pr[zt Isd. Thus, 
in HMMs, parameter estimation is directed at learning a synthesis model, Pr[zls]' 
while in MPCs, it is directed at learning a segmentation model, Pr[s,flz]. The 
direction of conditioning on z is a crucial difference. MPCs do not attempt to learn 
anything as ambitious as a joint distribution over acoustic feature trajectories. \ 

HMMs and MPCs also differ in how they weight the speech signal. In HMMs, each 
state contributes an amount to the overall log-likelihood that grows in proportion 
to its duration in time. In MPCs, on the other hand, each state contributes an 
amount that grows in proportion to its arc length. Naturally, the weighting by arc 
length attaches a more important role to short-lived but non-stationary phonemes, 
such as consonants. It also guarantees the invariance to nonlinear warpings of time 
(to which the predictions of HMMs are quite sensitive). 

In terms of previous work,\mr motivation for MPCs resembles that of Tishby (1990), 
who several years ago proposed a dynamical systems approach to speech processing. 
Because MPCs exploit the continuity of acoustic feature trajectories, they also bear 
some resemblance to so-called segmental HMMs (Ostendorf et aI, 1996). MPCs 
nevertheless differ from segmental HMMs in two important respects: the invariance 
to nonlinear warpings of time , and the emphasis on learning a segmentation model 
Pr[s , flz], as opposed to a synthesis model, Pr[xls]. 

Finally, we note that admitting a slight generalization in the concept of arc length, 
we can essentially realize HMMs as a special case of MPCs. This is done by com­
puting arc lengths along the spacetime trajectories z(t) = {x(t),t}-that is to say, 
replacing eq. (1) by dL2 = [zTg(z) z]dt 2 , where z = {:il, 1} and g(z) is a spacetime 
metric. This relaxes the invariance to nonlinear warpings of time and incorporates 
both movement in acoustic feature space and duration in time as measures of phone­
mic evolution. Moreover, in this setting, one can mimic the predictions of HMMs 
by setting the (J'i matrices to have only one non-zero element (namely, the diagonal 
element for delta-time contributions to the arc length) and by defining the functions 
<l>i(X) in terms of HMM emission probabilities P(xli) as: 

[ P(zli) ] 
<l>i(X) = -In 2::k P(xlk) . (8) 

This relation is important because it allows us to initialize the parameters of an 
MPC by those of a continuous-density HMM,. This initialization was used in all the 
experiments reported below. 

3 Automatic speech recognition 

Both HMMs and MPCs were used to, build connected speech recognizers. Training 
and test data came from speaker-independent databases of telephone speech. All 
data was digitized at the caller's local switch and transmitted in this form to the 
receiver. For feature extraction, input telephone signals (sampled at 8 kHz and 
band-limited between 100-3800 Hz) were pre-emphasized and blocked into 30ms 
frames with a frame shift of 10ms. Each frame was Hamming windowed, autocor­
related, and processed by LPC cepstral analysis to produce a vector of 12 liftered 
cepstral coefficients (Rabiner & Juang, 1993). The feature vector was then aug­
mented by its normalized log energy value, as well as temporal derivatives of first 
and second order. Overall, each frame of speech was described by 39 features . These 
features were used diffe:.;ently by HMMs and MPCs, as described below. 
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Table 1: Word error rates for HMMs (dashed) and MPCs (solid) on the task of 
recognizing NJ town names. The table shows the error rates versus the number of 
mixture components; the graph, versus the number of parameters per hidden state. 

Recognizers were evaluated on two tasks. The first task was recognizing New Jer­
sey town names (e.g., Newark) . The training data for this task (Sachs et aI , 1994) 
consisted of 12100 short phrases, spoken in the seven major dialects of American 
English . These phrases, ranging from two to four words in length, were selected to 
provide maximum phonetic coverage. The test data consisted of 2426 isolated utter­
ances of 1219 New Jersey town names and was collected from nearly 100 speakers. 
Note that the training and test data for this task have non-overlapping vocabularies . 

Baseline recognizers were built using 43Ieft-to-right continuous-density HMMs, each 
corresponding to a context-independent English phone. Phones were modeled by 
three-state HMMs, with the exception of background noise , which was modeled by 
a single state. State emission probabilities were computed by mixtures of Gaussians 
with diagonal covariance matrices. Different sized models were trained using M = 2, 
4, 8, 16, 32, and 64 mixture components per hidden state; for a particular model , 
the number of mixture components was the same across all states . Parameter 
estimation was handled by a Viterbi implementation of the Baum-Welch algorithm. 

MPC recognizers were built using the same overall grammar. Each hidden state 
in the MPCs was assigned a metric gi(~) = O';l<I>l(~). The functions <I>i(~) were 
initialized (and fixed) by the state emission probabilities of the HMMs, as given 
by eq. (8). The matrices O'i were estimated by iterating eq. (7). We computed arc 
lengths along the 14 dimensional spacetime trajectories through cepstra, log-energy, 
and time. Thus each O'i was a 14 x 14 symmetric matrix applied to tangent vectors 
consisting of delta-cepstra, delta-log-energy, and delta-time. 

The table in figure 1 shows the results of these experiments comparing MPCs to 
HMMs. For various model sizes (as measured by the number of mixture compo­
nents), we found the MPCs to yield consistently lower error rates than the HMMs. 
The graph in figure 1 plots these word error rates versus the number of modeling pa­
rameters per hidden state. This graph shows that the MPCs are not outperforming 
the HMMs merely because they have extra modeling parameters (i .e. , the O'i ma­
trices). The beam widths for the decoding procedures in these experiments were 
chosen so that corresponding recognizers activated roughly equal numbers of arcs. 

The second task in our experiments involved the recognition of connected alpha­
digits (e.g ., N Z 3 V J 4 E 3 U 2). The training and test data consisted of 
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Figure 2: Word error rates for HMMs and MPCs on the task of recognizing con­
nected alpha-digits. The table shows the error rates versus the number of mixture 
components; the graph , versus the number of parameters per hidden state. 

14622 and 7255 utterances, respectively. Recognizers were built from 285 sub-word 
HMMs/MPCs, each corresponding to a context-dependent English phone. The rec­
ognizers were trained and evaluated in the same way as the previous task. Results 
are shown in figure 2. 

While these results demonstrate the viability of MPCs for automatic speech recog­
nition, several issues require further attention. The most important issues are fea­
ture selection-how to define meaningful acoustic trajectories from the raw speech 
signal-and learning- how to parameterize and estimate the hidden state metrics 
gi (~) from sampled trajectories {z (t)}. These issues and others will be studied in 
future work. 
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