
Reinforcement Learning based on
On-line EM Algorithm

Masa-aki Sato t
t ATR Human Information Processing Research Laboratories

Seika, Kyoto 619-0288, Japan masaaki@hip.atr.co.jp

Shin Ishii +t
tNara Institute of Science and Technology

Ikoma, Nara 630-0101, Japan ishii@is.aist-nara.ac.jp

Abstract

In this article, we propose a new reinforcement learning (RL)
method based on an actor-critic architecture. The actor and
the critic are approximated by Normalized Gaussian Networks
(NGnet), which are networks of local linear regression units. The
NGnet is trained by the on-line EM algorithm proposed in our pre­
vious paper. We apply our RL method to the task of swinging-up
and stabilizing a single pendulum and the task of balancing a dou­
ble pendulum near the upright position. The experimental results
show that our RL method can be applied to optimal control prob­
lems having continuous state/action spaces and that the method
achieves good control with a small number of trial-and-errors.

1 INTRODUCTION

Reinforcement learning (RL) methods (Barto et al., 1990) have been successfully
applied to various Markov decision problems having finite state/action spaces, such
as the backgammon game (Tesauro, 1992) and a complex task in a dynamic envi­
ronment (Lin, 1992). On the other hand, applications to continuous state/action
problems (Werbos, 1990; Doya, 1996; Sofge & White, 1992) are much more difficult
than the finite state/action cases. Good function approximation methods and fast
learning algorithms are crucial for successful applications.

In this article, we propose a new RL method that has the above-mentioned two
features. This method is based on an actor-critic architecture (Barto et al., 1983),
although the detailed implementations of the actor and the critic are quite differ-

Reinforcement Learning Based on On-Line EM Algorithm 1053

ent from those in the original actor-critic model. The actor and the critic in our
method estimate a policy and a Q-function, respectively, and are approximated by
Normalized Gaussian Networks (NGnet) (l'doody & Darken , 1989). The NGnet is a
network of local linear regression units. The model softly partitions the input space
by using normalized Gaussian functions, and each local unit linearly approximates
the output within its partition. As pointed out by Sutton (1996), local models such
as the NGnet are more suitable than global models such as multi-layered percep­
trons, for avoiding serious learning interference in on-line RL processes. The NGnet
is trained by the on-line EM algorithm proposed in our previous paper (Sato &
Ishii, 1998). It was shown that this on-line E11 algorithm is faster than a gradient
descent algorithm. In the on-line EM algorithm, the positions of the local units
can be adjusted according to the input and output data distribution. Moreover,
unit creation and unit deletion are performed according to the data distribution.
Therefore , the model can be adapted to dynamic environments in which the input
and output data distribution changes with time (Sato & Ishii, 1998).

\Ve have applied the new RL method to optimal control problems for deterministic
nonlinear dynamical systems. The first experiment is the task of swinging-up and
stabilizing a single pendulum with a limited torque (Doya, 1996) . The second
experiment is the task of balancing a double pendulum where a torque is applied
only to the first pendulum. Our RL method based on the on-line E11 algorithm
demonstrated good performances in these experiments.

2 NGNET AND ON-LINE EM ALGORITHM

In this section, we review the on-line EM algorithm for the NGnet proposed in our
previous paper (Sato & Ishii , 1998). The NGnet (Moody & Darken, 1989) , which
transforms an N-dimensional input vector x to a D-dimensional output vector y , is
defined by the following equations.

(la)

(lb)

AI denotes the number of units , and the prime (') denotes a transpose. Gi(x) is
an N-dimensional Gaussian function, which has an N-dimensional center /11 and an
(N x N)-dimensional covariance matrix E j • W i and bi are a (D x N)-dimensionallin­
ear regression matrix and a D-dimensional bias vector, respectively. Subsequently,
we use notations ll'-j == (Wi, bl) and x' == (x' , 1).

The NGnet can be interpreted as a stochastic model, in which a pair of an input and
an output , (x, y) , is a stochastic event. For each event, a unit index i E {I , ... , AI}
is assumed to be selected, which is regarded as a hidden variable. The stochastic
model is defined by the probability distribution for a triplet (x, y , i), which is called
a complete event:

P(x , y , ilB) = (27r)-(D+N)/2a ;-DIEi l- 1 / 2 AI - I (2)

x exp [- ~(x - /1i)'Ei l (x - 11i) - 2~? (y - It-ix)2] .

Here , B == {/1i, E i , a?, 11"1 Ii = 1, ... , AI} is a set of model parameters. We can easily
proye that the expectation value of the output y for a giYen input x, i.e., E[Ylx] ==

1054 M. Sato and S. Ishii

J yP(ylx , B)dy , is identical to equation (1). Namely, the probability distribution (2)
provides a stochastic model for the NGnet .

From a set of T events (observed data) (X,Y) == {(x(t),y(t)) It = 1, ... ,TL the
model parameter B of the stochastic model (2) can be determined by the maximum
likelihood estimation method, in particular, by the EM algorithm (Dempster et al.,
1977) . The EM algorithm repeats the following E- and M-steps.

E (~stimation) step: Let fJ be the present estimator. By using fJ , the posterior
probability that the i-th unit is selected for (x(t), yet)) is given as

M

P(i lx(t) , yet) , fJ) = P(x(t), yet) , ilfJ)!2: P(x(t) , yet), jlfJ). (3)
j=1

M (l\laximization) step: Using the posterior probability (3), the expected log-
likelihood L(Bj1J, X, Y) for the complete events is defined by

T AI

L(Bj1J, X, Y) = 2: 2: P(ilx(t) , yet) , fJ) log P(x(t), yet), iIB). (4)
t=1 ;=1

Since an increase of L(Bj1J, X , Y) implies an increase of the log-likelihood for the ob­
served data (X, Y) (Dempster et al., 1977) , L(BlfJ , X, Y) is maximized with respect
to B. A solution of the necessity condition 8L!8B = 0 is given by (Xu et al. , 1995) .

Ili = (x)i(T)!(l)i(T) (5a)

~i 1 = [(xx')i(T)!(l)i(T) - lli(T)Il~(T)] - 1 (5b)

Tili = (yi;')i(T)[(i;i;')i(T)]-l (5c)

a; = ~ [(ly2 1)i(T) - Tr (Tt';(i;y')i(T))] !(l)i(T), (5d)

where Oi denotes a weighted mean with respect to the posterior probability (3)
and it is defined by

1 T _

(f(x, y)),(T) == T 2: f(x(t), y(t))P(ilx(t), yet) , B). (6)
t=1

The EM algorithm introduced above is based on batch learning (Xu et al., 1995) ,
namely, the parameters are updated after seeing all of the observed data. We
introduce here an on-line version (Sato & Ishii, 1998) of the EM algorithm. Let
B(t) be the estimator after the t-th observed data (x(t),y(t)). In this on-line EM
algorithm, the weighted mean (6) is replaced by

T T

«f(x,y) »i (T) == TJ(T) 2:(II >.(s))f(x(t),y(t))P(ilx(t),y(t),B(t -1)). (7)
t=1 s=i+1

The parameter >'(t) E [0,1] is a discount factor, which is introduced for forgetting

the effect of earlier inaccurate estimator. TJ(T) == (Li=1 (TI~=t+l >.(S))) - 1 is a nor­
malization coefficient and it is iteratively calculated by TJ(t) = (1 + >.(t)!TJ(t _1)) - 1.
The modified weighted mean « . »i can be obtained by the step-wise equation:

« f(x, y) »i (t) =« f(x, y) » i (t - 1) (8)

+TJ(t) [!(x(t),y(t))Pi(t)-« f(x,y) »i (t - l)J,

Reinforcement Learning Based on On-Line EM Algorithm /055

where Pi(t) == P(ilx(t) , y(t) , {}(t - 1)). Using the modified weighted mean, the new
parameters are obtained by the following equations.

Ai(t = 1 [Ai(t - 1 - Pi(t)Ai (t - l)x(t)x'(t~A i (t - 1) 1
) 1 - 17(t)) (l/17(t) - 1) + Pi(t)x'(t)Ai(t - l)x(t)

f.Li(t) =« x »i (t)/ « 1 »i (t)
W'i (t) = W'i(t - 1) + 17(t)Pi(t)(y(t) - Wi(t - l)x(t))x'(t)Ai(t)

a;(t) = ~ [« lyl2 »i (t) - Tr (Wi(t)« xy' »i (t))] /« 1 »i (t),

(9a)

(9b)

(9c)

(9d)

It can be proved that this on-line EM algorithm is equivalent to the stochastic
approximation for finding the maximum likelihood estimator, if the time course of
the discount factor A(t) is given by

A(t) t~ 1 - (1 - a)/(at + b),

where a (1 > a > 0) and b are constants (Sato & Ishii, 1998).

(11)

We also employ dynamic unit manipulation mechanisms in order to efficiently allo­
cate the units (Sato & Ishii, 1998). The probability P(x(t), y(t), i I (}(t-1)) indicates
how probable the i-th unit produces the datum (x(t) , y(t)) with the present param­
eter {)(t - 1) . If the probability for every unit is less than some threshold value , a
new unit is produced to account for the new datum. The weighted mean « 1 » i (t)
indicates how much the i-th unit has been used to account for the data until t. If
the mean becomes less than some threshold value, this unit is deleted.

In order to deal with a singular input distribution, a regularization for 2:;1 (t) is
introduced as follows.

2: ; l(t) = [(<< xx' »i (t) - f.Li(t)f.L;(t)« 1 »i (t) (12a)

+ Q « ~; »i (t)IN) / « 1 »i (t)]-l
«~T »i (t) = (<< Ixl 2 »i (t) -1f.Li(t)12« 1 »i (t)) /N, (12b)

where IN is the (N x N)-dimensional identity matrix and Q is a small constant. The
corresponding Ai(t) can be calculated in an on-line manner using a similar equation
to (9a) (Sato & Ishii , 1998).

3 REINFORCEMENT LEARNING

In this section, we propose a new RL method based on the on-line EM algorithm
described in the previous section. In the following, we consider optimal control prob­
lems for deterministic nonlinear dynamical systems having continuous state/action
spaces. It is assumed that there is no knowledge of the controlled system. An
actor-critic architecture .(Barto et al. ,1983) is used for the learning system. In the
original actor-critic model, the actor and the critic approximated the probability
of each action and the value function, respectively, and were trained by using the
TD-error. The actor and the critic in our RL method are different from those in
the original model as explained later.

1056 M. Sato and S. Ishii

For the current state , xc(t), of the controlled system, the actor outputs a control
signal (action) u(t), which is given by the policy function 00, i.e., u(t) = O(xc(t)).
The controlled system changes its state to xc(t + 1) after receiving the control
signal u(t). Subsequently, a reward r(xc(t) , u(t)) is given to the learning system.
The objective of the learning system is to find the optimal policy function that
maximizes the discounted future return defined by

00

V(xc) == L "/r(xc(t), O(xc(t)))l xc (O)=::x c ' (13)
/ = 0

where 0 < , < 1 is a discount factor. V(xc), which is called the value function , is
defined for the current policy function 0(-) employed by the actor. The Q-function
is defined by

(14)

where xc(t) = Xc and u(t) = u are assumed. The value function can be obtained
from the Q-function:

V(xc) = Q(xc, O(xc))·
The Q-function should satisfy the consistency condition

(15)

Q(xc(t), u(t)) = ,Q(xc(t + 1), O(xc(t + 1)) + r(xc(t) , u(t)). (16)

In our RL method, the policy function and the Q-function are approximated by the
NGnets, which are called the actor-network and the critic-network, respectively. In
the learning phase, a stochastic actor is necessary in order to explore a better policy.
For this purpose, we employ a stochastic model defined by (2) , corresponding to
the actor-network. A stochastic action is generated in the following way. A unit
index i is selected randomly according to the conditional probability P(ilxc) for
a given state X C. Subsequently, an action u is generated randomly according to
the conditional probability P(ulxc, i) for a given Xc and the selected i. The value
function can be defined for either the stochastic policy or the deterministic policy.
Since the controlled system is deterministic, we use the value function defined for
the deterministic policy which is given by the actor-network.

The learning process proceeds as follows. For the current state xc(t) , a stochastic
action u(t) is generated by the stochastic model corresponding to the current actor­
network. At the next time step , the learning system gets the next state xc(t+ 1) and
the reward r(xc(t) , u(t)). The critic-network is trained by the on-line EM algorithm.
The input to the critic-network is (xc(t) ,u(t)). The target output is given by the
right hand side of (16) , where the Q-function and the deterministic policy function
00 are calculated using the current critic-network and the current actor-network,
respectively. The actor-network is also trained by the on-line EM algorithm. The
input to the actor-network is xc(t). The target output is given by using the gradient
of the critic-network (Sofge & White, 1992):

(17)

where the Q-function and the deterministic policy function 00 are calculated using
the modified critic-network and the current actor-network, respectively. E is a small
constant. This target output gives a better action, which increases the Q-function
value for the current state Xc (t) , than the current deterministic action 0 (xc (t)).

In the above learning scheme, the critic-network and the actor-network are updated
concurrently. One can consider another learning scheme. In this scheme, the learn­
ing system tries to control the controlled system for a given period of time by using
the fixed actor-network. In this period, the critic-network is trained to estimate the

Reinforcement Learning Based on On-Line EM Algorithm 1057

Q-function for the fixed actor-network. The state trajectory in this period is saved.
At the next stage, the actor-network is trained along the saved trajectory using the
critic-network modified in the first stage.

4 EXPERIMENTS

The first experiment is the task of swinging-up and stabilizing a single pendulum
with a limited torque (Doya, 1996) . The state of the pendulum is represented
by X c = (¢, cp), where cp and ¢ denote the angle from the upright position and the
angular velocity of the pendulum, respectively. The reward r(xc(t) , u(t)) is assumed
to be given by f(xc(t + 1)) , where

f(xc) = exp(-(¢)2/(2vi) - cp2/(2v~)). (18)
VI and V2 are constants. The reward (18) encourages the pendulum to stay high .
After releasing the pendulum from a vicinity of the upright position, the control
and the learning process of the actor-critic network is conducted for 7 seconds. This
is a single episode. The reinforcement learning is done by repeating these episodes.
After 40 episodes, the system is able to make the pendulum achieve an upright
position from almost every initial state. Even from a low initial position, the system
swings the pendulum several times and stabilizes it at the upright position. Figure
1 shows a control process, i.e., stroboscopic time-series of the pendulum, using the
deterministic policy after training. According to our previous experiment, in which
both of the actor- and critic- networks are the NGnets with fixed centers trained
by the gradient descent algorithm, a good control was obtained after about 2000
episodes. Therefore , our new RL method is able to obtain a good control much
faster than that based on the gradient descent algorithm.

The second experiment is the task of balancing a double pendulum near the up­
right position. A torque is applied only to the first pendulum. The state of the
pendulum is represented by X c = (¢1, ¢2 , CPl, CP2), where CPl and CP2 are the first pen­
dulum's angle from the upright direction and the second pendulum's angle from the
first pendulum's direction, respectively. ¢1 (¢2) is the angular velocity of the first
(second) pendulum. The reward is given by the height of the second pendulum's
end from the lowest position. After 40 episodes, the system is able to stabilize
the double pendulum. Figure 2 shows the control process using the deterministic
policy after training. The upper two figures show stroboscopic time-series of the
pendulum. The dashed, dotted, and solid lines in the bottom figure denote cPl/7r,
CP2/7r , and the control signal u produced by the actor-network, respectively. After
a transient period, the pendulum is successfully controlled to stay near the upright
position.

The numbers of units in the actor- (critic-) networks after training are 50 (109) and
96 (121) for the single and double pendulum cases, respectively. The RL method
using center-fixed NGnets trained by the gradient descent algorithm employed 441
(= 212) actor units and 18,081 (= 212x41) critic units, for the single pendulum task.
For the double pendulum task, this scheme did not work even when 14,641 (= 114)
actor units and 161 ,051 (= 114 X 11) critic units were prepared. The numbers of
units in the NGnets trained by the on-line EM algorithm scale moderately as the
input dimension increases.

5 CONCLUSION

In this article, we proposed a new RL method based on the on-line EM algorithm.
We showed that our RL method can be applied to the task of swinging-up and

1058 M. Sato and S. Ishii

stabilizing a single pendulum and the task of balancing a double pendulum near
the upright position. The number of trial-and-errors needed to achieve good control
was found to be very small in the two tasks. In order to apply a RL method
to continuous state/action problems, good function approximation methods and
fast learning algorithms are crucial. The experimental results showed that our RL
method has both features.

References

Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). IEEE Transactions on
Systems, Man, and Cybernetics, 13,834-846.

Barto, A. G., Sutton, R. S., & Watkins, C. J. C. H. (1990). Learning and Com­
putational Neuroscience: Foundations of Adaptive Networks (pp. 539-602), MIT
Press.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Journal of Royal Statistical
Society B, 39, 1-22.

Doya, K. (1996). Advances in Neural Information Processing Systems 8 (pp. lO73-
1079), MIT Press.

Lin, L. J. (1992). Machine Learning, 8,293-321.

Moody, J., & Darken, C. J. (1989). Neural Computation, 1, 281-294.

Sato, M., & Ishii, S. (1998). ATR Technical Report, TR-H-243, ATR.

Sofge, D. A., & White, D. A. (1992). Handbook of Intelligent Control (pp. 259-282),
Van Nostrand Reinhold.

Sutton, R. S. (1996) . Advances in Neural Information Processing Systems 8
(pp. 1038-1044), MIT Press.

Tesauro, G. J. (1992). Machine Learning, 8, 257-278.

Werbos, P. J. (1990). Neural Networks for Control (pp. 67-95), MIT Press.

Xu, 1., Jordan, M. 1., & Hinton, G. E. (1995). Advances in Neural Information
Processing Systems "((pp. 633-640), MIT Press.

Time Sequence of Inverted Pendulum

3l II I II! j l \ \ \ \ \ \ \ \ \ \ \ \>
o 2

2 3 4

Jl <II i \ \ '\, '-.~/'//////'--~
456

U :-\I//?-~' ~ \ II 111111 ~
6 7

Time (sec.)

Figure 1

8

3

-l~~ ________ ~ ________ ~_
o 2

3

-l~~ ________ ~ ________ ~_
234

Figure 2

