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Abstract 

Classifier systems are now viewed disappointing because of their prob­
lems such as the rule strength vs rule set performance problem and the 
credit assignment problem. In order to solve the problems, we have de­
veloped a hybrid classifier system: GLS (Generalization Learning Sys­
tem). In designing GLS, we view CSs as model free learning in POMDPs 
and take a hybrid approach to finding the best generalization, given the 
total number of rules. GLS uses the policy improvement procedure by 
Jaakkola et al. for an locally optimal stochastic policy when a set of 
rule conditions is given. GLS uses GA to search for the best set of rule 
conditions. 

1 INTRODUCTION 

Classifier systems (CSs) (Holland 1986) have been among the most used in reinforcement 
learning. Some of the advantages of CSs are (1) they have a built-in feature (the use of 
don't care symbols "#") for input generalization, and (2) the complexity of pOlicies can 
be controlled by restricting the number of rules. In spite of these attractive features, CSs 
are now viewed somewhat disappointing because of their problems (Wilson and Goldberg 
1989; Westerdale 1997). Among them are the rule strength vs rule set performance prob­
lem, the definition of the rule strength parameter, and the credit assignment (BBA vs PSP) 
problem. 

In order to solve the problems, we have developed a hybrid classifier system: GLS (Gener­
alization Learning System). GLS is based on the recent progress ofRL research in partially 
observable Markov decision processes (POMDPs). In POMDPs, the environments are re­
ally Markovian, but the agent cannot identify the state from the current observation. It may 
be due to noisy sensing or perceptual aliasing. Perceptual aliasing occurs when the sensor 
returns the same observation in multiple states. Note that even for a completely observable 
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MDP, the use of don't care symbols for input generalization will make the process as if it 
were partially observable. 

In designing GLS, we view CSs as RL in POMDPs and take a hybrid approach to finding 
the best generalization, given the total number of rules. GLS uses the policy improvement 
procedure in Jaakkola et a!. (1994) for an locally optimal stochastic policy when a set of 
rule conditions is given. GLS uses GA to search for the best set of rule conditions. 

The paper is organized as follows. Since CS problems are easier to understand from GLS 
perspective, we introduce Jaakkola et a!. (1994), propose GLS, and then discuss CS prob­
lems. 

2 LEARNING IN POMDPS 

Jaakkola et a1. (1994) consider POMDPs with perceptual aliasing and memoryless stochas­
tic policies. Following the authors, let us call the observations messages. Therefore, a 
policy is a mapping from messages to probability distributions (PDs) over the actions. 

Given a policy 7r, the value of a state s, V7!' (s), is defined for POMDPs just as for MDPs. 
Then, the value of a message m under policy 7r, V7!' (m ), can be defined as follows: 

V7!'(m) = LP7!'(slm)V7!'(s) (1) 
sES 

where P7!' (slm) is the probability that the state is s when the message is m under the policy 
7r. 

Then, the following holds. 

N 

lim'"' E{R(st, at) -R lSI = s} 
N-+(X)~ 

t=l 
E{V(s) Is --t m} 

(2) 

(3) 

where St and at refer to the state and the action taken at the tth step respectively, R( St, at) 
is the immediate reward at the tth step, R is the (unknown) gain (Le. the average reward 
per step). s --t m refers to all the instances where m is observed in sand E{· I s --t m} is 
a Monte-Carlo expectation. 

In order to compute E{V(s) I s --t m}, Jaakkola et a1. showed a Monte-Carlo procedure: 

1 
vt(m) = 'k{ Rtl +rl,IRtl+l + rl,2Rtl+2 + ... + rl ,t-tIRt 

+ Rt2 +r2,IRt2+l + r2,2Rt2+2 + ... + r2,t-t2Rt 

(4) 
+ Rtk +rk,IRtdl + ... + rk ,t-tkRtl 

where tk denotes. the time step corresponding to the kth occurrence of the message m, 
R t = R(st, at) - R for every t, rk,T indicates the discounting at the Tth step in the kth 
sequence. By estimating R and by suitably setting rk ,T, Vt(m) converges to V7!'(m). 
Q7!' (m, a), Q-value of the message m for the action a under the policy 7r, is also defined 
and computed in the same way. 

Jaakkola et a1. have developed a policy improvement method: 

Step 1 Evaluate the current policy 7r by computing V7!' (m) and Q7!' (m, a) for each m and 
a. 
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Step 2 Test for any m whether maxa Q1r (m, a) > V 1r (m) holds. If 110t, then return 7r. 

Step 3 For each m and a, define 7r 1 (alm) as follows: 
7r 1 (aim) = 1.0 when a = argmaxaQ1r(m, a), 7r1 (aim) = 0.0 otherwise. 
Then, define 7r f as 7r f (aim) = (1 - € )7r( aim) + €7r1 (aim) 

Step 4 Set the new policy as 7r = 7r f , and goto Stepl. 

3 GLS 

Each rule in GLS consists of a condition part, an action part, and an evaluation 
part: Rule = (Condit'ion, Action, Evaluation). The condition part is a string c 
over the alphabet {O, 1, #}, and is compared with a binary sensor message. # is a 
don't care symbol, and matches 0 and 1. When the condition c matches the mes­
sage, the action is randomly selected using the PD in the action part: Action = 
(p(allc),p(a21c), ... ,p(aIA!lc)), I:j'!\ p(ajlc) = 1.0 where IAI is the total number ofac­
tions. The evaluation part records the value of the condition V ( c) and the Q-values of the 
condition action pairs Q(c, a): Evaluation = (V(c), Q(c, ad , Q(c, a2), ... ,Q(c, a lAI))' 
Each rule set consists of N rules, {Rulel, Rule2,"" RuleN}. N, the total number of 
rules in a rule set, is a design parameter to control the complexity of policies. All the rules 
except the last one are called standard rules. The last rule Rule N is a special rule which is 
called the default rule. The condition part of the default rule is a string of # 's and matches 
any message. 

Learning in GLS proceeds as follows: (1 )Initialization: randomly generate an initial pop­
ulation of M rule sets, (2)Policy Evaluation and Improvement: for each rule set, repeat a 
policy evaluation and improvement cycle for a suboptimal policy, then, record the gain of 
the policy for each rule set, (3)Genetic Algorithm: use the gain of each rule set as its fit­
ness measure and produce a new generation of rule sets, (4) Repeat: repeat from the policy 
evaluation and improvement step with the new generation of rule sets. 

In (2)Policy Evaluation and Improvement, GLS repeats the following cycle for each rule 
set. 

Step 1 Set € sufficiently small. Set t max sufficiently large. 

Step 2 Repeat for 1 :::; t :::; t max • 

1. Make an observation of the environment and receive a message mt from the 
sensor. 

2. From all the rules whose condition matches the message mt, find the rule 
whose condition is the most specific l . Let us call the rule the active rule. 

3. Select the next action at randomly according to the PD in the action part of 
the active rule, execute the action, and receive the reward R( St, at) from the 
environment. (The state St is not observable.) 

4. Update the current estimate of the gain R from its previous estimate and 
R( St, ad . Let R t = R( St , ad - R. For each rule, consider its condition Ci 

as (a generalization of) a message, and update its evaluation part V ( Ci ) and 
Q(c;, aHa E A) using Eq.(4). 

Step 3 Check whether the following holds. If not, exit. 
3i (1 :::; i :::; N), maxa Q ( Ci , a) > V ( cd 

Step 4 Improve the current policy according to the method in the previous section, and 
update the action part of the corresponding rules and goto Step 2. 

IThe most specific rule has the least number of #'s. This is intended only for saving the number 
of rules. 
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GLS extracts the condition parts of all the rules in a rule set and concatenates them to 
form a string. The string will be an individual to be manipulated by the genetic algorithm 
(GA). The genetic algorithm used in GLS is a fairly standard one. GLS combines the SGA 
(the simple genetic algorithm) (Goldberg 1989) with the elitist keeping strategy. The SGA 
is composed of three genetic operators: selection, crossover, and mutation. The fitness 
proportional selection and the single-point crossover are used. The three operators are 
applied to an entire population at each generation. Since the original SGA does not consider 
#'s in the rule conditions, we modified SGA as follows. When GLS randomly generates 
an initial population of rule sets, it generates # at each allele position in rule conditions 
according to the probability P#. 

4 CS PROBLEMS AND GLS 

In the history of classifier systems, there were two quite different approaches: the Michigan 
approach (Holland and Reitman 1978), and the Pittsburgh (Pitt) approach (Dejong 1988). 
In the Michigan approach, each rule is considered as an individual and the rule set as the 
population in GA. Each rule has its strength parameter, which is based on its future payoff 
and is used as the fitness measure in GA. These aspects of the approach cause many prob­
lems. One is the rule strength vs rule set performance problem. Can we collect only strong 
rules and get the best rule set performance? Not necessarily. A strong rule may cooperate 
with weak rules to increase its payoff. Then, how can we define and compute the strength 
parameter for the best rule set performance? In spite of its problems, this approach is now 
so much more popular than the other, that when people simply say classifier systems, they 
refer to Michigan type classifier systems. In the Pitt approach, the problems of the Michi­
gan approach are avoided by requiring GA to evaluate a whole rule set. In the approach, a 
rule set is considered as an individual and multiple rule sets are kept as the population. The 
problem of the Pitt approach is its computational difficulties. 

GLS can be considered as a combination of the Michigan and Pitt approaches. GA in GLS 
works as that in the Pitt approach. It evaluates a total rule set, and completely avoids the 
rule strength vs rule set performance problem in the Michigan approach. As the Michigan 
type CSs, GLS evaluates each rule to improve the policy. This alleviates the computational 
burden in the Pitt approach. Moreover, GLS evaluates each rule in a more formal and sound 
way than the Michigan approach. The values, V(c), and Q(c, a), are defined on the basis 
of POMDPs, and the policy improvement procedure using the values is guaranteed to find 
a local maximum. 

Westerdale (1997) has recently made an excellent analysis of problematic behaviors of 
Michigan type CSs. Two popular methods for credit assignment in CSs are the bucket 
brigade algorithm (BBA) (Holland 1986) and the profit sharing plan (PSP) (Grefenstette 
1988). Westerdale shows that BBA does not work in POMDPs. He insists that PSP with 
infinite time span is necessary for the right credit assignment, although he does not show 
how to carry out the computation. GLS does not use BBA or PSP. GLS uses the Monte 
Carlo procedure, Eq.(4), to compute the value of each condition action pair. The series 
in Eq.(4) is slow to converge. But, this is the cost we have to pay for the right credit 
assignment in POMDPs. Westerdale points out another CS problem. He claims that a 
distinction must be made between the availability and the payoff of rules. We agree with 
him. As he says, if the expected payoff of Rule 1 is twice as much as Rule 2, then we 
want to a/ways choose Rule 1. GLS makes the distinction. The probability of a stochastic 
policy 71'(alc) in GLS corresponds to the availability, and the value of a condition action 
pair Q ( c, a) corresponds to the payoff. 

Samuel System (Grefenstette et a1. 1990) can also be considered as a combination of the 
Michigan and Pitt approaches. Samuel is a highly sophisticated system which has lots of 
features. We conjecture, however, that Samuel is not free from the CS problems which 
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Westerdale has analyzed. This is because Samuel uses PSP for credit assignment, and 
Samuel uses the payoff of each rule for action selection, and does not make a distinction 
between the availability and the payoff of rules. 

xes (Wilson 1995) seems to be an exceptionally reliable Michigan·type es. In xes, each 
rule's fitness is based not on its future payoff but on the prediction accuracy of its future 
payoff (XeS uses BBA for credit assignment). Wilson reports that xes's population tends 
to form a complete and accurate mapping from sensor messages and actions to payoff 
predictions. We conjecture that xes tries to build the most general Markovian model of 
the environment. Therefore, it will be difficult to apply xes when the environment is not 
Markovian, or when we cannot afford the number of rules enough to build a Markovian 
model of the environment, even if the environment itself is Markovian. As we will see in 
the next section, GLS is intended exactly for these situations. 

Kaelbling et a1. (19%) surveys methods for input generalization when reward is delayed. 
The methods use a function approximator to represent the value function by mapping a state 
description to a value . Since they use value iteration or Q·leaming anyway, it is difficult to 
apply the methods when the generalization violates the Markov assumption and induces a 
POMDP. 

5 EXPERIMENTS 

We have tested GLS with some of the representative problems in es literature. Fig. 1 shows 
Grefl world (Grefenstette 1987). In Grefl world, we used GLS to find the smallest rule set 
which is necessary for the optimal performance. Since this is not a POMDP but an MDP, the 
optimal policy can easily be learned when we have a corresponding rule for each of the 16 
states. However, when the total number of rules is less than that of states, the environment 
looks like a POMDP to the learning agent, even if the environment itself is an MDP. The 
graph shows how the gain of the best rule set in the population changes with the generation. 
We can see from the figure that four rules are enough for the optimal performance. Also 
note that the saving of the rules is achieved by selecting the most specific matching rule 
as an active rule. The rule set with this rule selection is called the defallit hierarchy in es 
literature. 
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Figure 1: LEFT: GREF1 World. States {O, 1,2, 3} are the start states and states {12.13, 14, 15} 
are the end states. In each state, the agent gets the state number (4 bits) as a message, and chooses 
an action a,b,c, or d. When the agent reaches the end states, he receives reward 1000 in state 13, but 
reward 0 in other states. Then the agent is put in one of the start states with equal probability. We 
added 10% action errors to make the process ergodic. When an action error occurs, the agent moves 
to one of the 16 states with equal probability. 
RIGHT: Gain of the best rule set. Parameters: tma ;r =: 10000. € =: 0.10. M =: 10. N =: 

2,3 , 4, P# =: 0.33. For N =: 4, the best rule set at the 40th generation was { if 0101 (State 5) 
then a 1.0, if 1010 (State 10) then c 1.0, if ##11 (States 3,7,11,15) then d 1.0, if #### (Default 
Rule) then b 1.0}. 
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Figure 2: LEFf: McCallum's Maze. We show the state numbers in the left, and the messages in the 
right. States 8 and 9 are the start states, and state G is the goal state. In each state, the agent receives 
a sensor message which is 4 bit long, Each bit in the message tells whether a wall exists in each of 
the four directions. From each state, the agent moves to one of the adjacent states. When the agent 
reaches the goal state, he receives reward 1000. The agent is then put in one of the start states with 
equal probability. 
RIGHT: Gain of the best rule set. Parameters: tmBX = 50000, ~ = 0.10, M = 10, N = 5,6, P# = 
0.33. 

Fig. 2 is a POMDP known as as McCallum's Maze (McCallum 1993). Thanks to the use 
of stochastic policies, GLS achieves near optimal gain for memoryless poliCies. Note that 
no memoryless deterministic policy can take the agent to the goal for this problem. 

We have seen GLS's generalization capability for an MDP in Grefl World, the advantage 
of stochastic policies for a POMDP in McCallum's maze. In Woods7 (Wilson 1994), we 
attempt to test GLS's generalization capability for a POMDP. See Fig. 3. Since each sensor 
message is 16 bit long, and the conditions of GLS rules can have either O,l,or # for each of 
the 16 bits, there are 316 possible conditions in total. When we notice that there are only 
92 different actual sensor messages in the environment, it seems quite difficult to discover 
them only by using GA. In fact, when we ran GLS for the first time, the standard rules 
very rarely matched the messages and the default rule took over most of the time. In order 
to avoid the no matching rule problem, we made the number of rules in a rule set large 
(N = 100), increased P# from 0.33 in the previous problems to 0.70. 

The problem was independently attacked by other methods. Wilson applied his ZCS, zeroth 
level classifier system, to Woods7 (Wilson 1994). The gain was 0.20. ZCS has a special 
covering procedure to tum around the no matching rule problem. The covering procedure 
generates a rule which matches a message when none of the current rules matches the 
message. We expect further improvement on the gain, if we equip GLS with some covering 
procedure. 

6 SUMMARY 

In order to solve the CS problems such as the rule strength vs rule set performance problem 
and the credit assignment problem, we have developed a hybrid classifier system: GLS. 
We notice that generalization often leads to state aliasing. Therefore, in designing GLS, 
we view CSs as model free learning in POMDPs and take a hybrid approach to finding 
the best generalization, given the total number of rules. GLS uses the policy improvement 
procedure by Jaakkola et a1. for an locally optimal stochastic policy when a set of rule 
conditions is given. GLS uses GA to search for the best set of rule conditions. 
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Figure 3: LEFT: Woods7.Each cell is either empty".", contains a stone "0", or contains food "F'. 
The cells which contain a stone are not passable, and the cells which contain food are goals. In each 
cell, the agent receives a 2 * 8 = 16 bit long sensor message, which tells the contents of the eight 
adjacent cells. From each cell, the agent can move to one of the eight adjacent cells. When the agent 
reaches a cell which contains food, he receives reward 1. The agent is then put in one of the empty 
cells with equal probability. 
RlGHT:Gain of the best rule set. Parameters: tma x = 10000, to = 0.10, M = 10, N = 100, P# = 
0.70. 
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