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Abstract 

We have previously presented a coarse-to-fine hierarchical pyra­
mid/neural network (HPNN) architecture which combines multi­
scale image processing techniques with neural networks. In this 
paper we present applications of this general architecture to two 
problems in mammographic Computer-Aided Diagnosis (CAD). 
The first application is the detection of microcalcifications. The 
<:oarse-to-fine HPNN was designed to learn large-scale context in­
formation for detecting small objects like microcalcifications. Re­
ceiver operating characteristic (ROC) analysis suggests that the 
hierarchical architecture improves detection performance of a well 
established CAD system by roughly 50 %. The second application 
is to detect mammographic masses directly. Since masses are large, 
extended objects, the coarse-to-fine HPNN architecture is not suit­
able for this problem. Instead we construct a fine-to-coarse HPNN 
architecture which is designed to learn small-scale detail structure 
associated with the extended objects. Our initial results applying 
the fine-to-coarse HPNN to mass detection are encouraging, with 
detection performance improvements of about 36 %. We conclude 
that the ability of the HPNN architecture to integrate information 
across scales, both coarse-to-fine and fine-to-coarse, makes it well 
suited for detecting objects which may have contextual clues or 
detail structure occurring at scales other than the natural scale of 
the object. 

1 Introduction 

In a previous paper [8] we presented a coarse-to-fine hierarchical pyramid/neural 
network (HPNN) architecture that combines multi-scale image processing tech-
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niques with neural networks to search for small targets in images (see figure IA). 
To search an image we apply the network at a position and use its output as an 
estimate of the probability that a target (an object of the class we wish to find) is 
present there. We then repeat this at each position in the image. In the coarse­
to-fine HPNN , the hidden units of networks operating at low resolution or coarse 
scale learn associated context information, since the targets themselves are difficult 
to detect at low resolution. The context is then passed to networks searching at 
higher resolution. The use of context can significantly improve detection perfor­
mance since small objects have few distinguishing features. In the HPNN each of 
the networks receives information directly from only a small part of several feature 
images , and so the networks can be relatively simple. The network at the highest 
resolution integrates the contextual information learned at coarser resolutions to 
detect the object of interest. 

The HPNN architecture can be extended by considering the implications of inverting 
the information flow in the coarse-to-fine architecture. This fine-to-coarse HPNN 
would have networks extracting detail structure at fine resolutions of the image 
and then passing this detail information to networks operating at coarser scales 
(see figure IB). For many types of objects, information about the fine structure is 
important for discriminating between different classes. The fine-to-coarse HPNN is 
therefore a natural architecture for exploiting fine detail information for detecting 
extended objects. 

In this paper , we present our experiences in applying the HPNN framework to 
two problems in mammographic Computer-Aided Diagnosis (CAD); that of detect­
ing microcalcifications in mammograms and that of detecting malignant masses in 
mammograms. The coarse-to-fine HPNN architecture is well-suited for the micro­
calcification problem, while the fine-to-coarse HPNN is suited for mass detection. 
We evaluate the performance and utility of the HPNN framework by considering 
its effects on reducing false positive rates in a well characterized CAD system. 

The University of Chicago (UofC) has been actively developing 'mammographic 
CAD systems for micro calcification and mass detection [6] and has been evaluating 
their performance clinically. A general block diagram showing the basic processing 
elements of these CAD systems is shown in figure 2. First, a pre-processing step 
is used to segment the breast area and increase the overall signal-to-noise levels in 
the image. Regions of interest (ROIs) are defined at this stage, representing local 
areas of the breast which potentially contain a cluster of micro calcifications or a 
mass. The next stage typically involves feature extraction and rule-based/heuristic 
analysis , in order to prune false positives. The remaining ROIs are classified as 
positive or negative by a statistical classifier or neural network. The CAD system 
is used as a "second reader", aiding the radiologist by pointing out spots to double 
check. One of the key requirements of CAD is that false positive rates be low 
enough that radiologists will not ignore the CAD system output. Therefore it is 
critical to reduce false positive rates of CAD systems without significant reductions 
in sensitivity. In this paper we evaluate the HPNN framework within the context 
of reducing the false positive rates of the UofC CAD systems for microcalcification 
and mass detection. In both cases the HPNN acts as a post-processor of the UofC 
CAD system. 

2 Microcalcification detection 

Microcalcifications are calcium deposits in breast tissue that appear as very small 
bright dots in mammograms. Clusters of microcalcifications frequently occur around 
tumors. Unfortunately microcalcification clusters are sometimes missed, since they 
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Figure 1: Hierarchical pyramid/neural network architectures for (A) detecting mi­
crocalcifications and (B) detecting masses. In (A) context is propagated from low 
to high resolution via the hidden units of low resolution networks. In (B) small 
scale detail information is propagated from high to low resolution. In both cases 
the output of the last integration network is an estimate of the probability that a 
target is present. 
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Figure 2: Block diagram for a typical CAD detection system. 

can be quite subtle and the radiologists can only spend about a minute evaluating 
a patient's mammograms. 

Data used for the micro calcification experiments was provided by The University of 
Chicago. The first set of data consists of 50 true positive and 86 false positive ROls_ 
These ROIs are 99x99 pixels and digiti7,ed at 100 micron resolution. A second set 
of data from the UofC clinical testing database included 47 true positives and 103 
false positives, also 99x99 and sampled at 100 micron resolution. 

We trained the coarse-to-fine HPNN architecture in figure 1A as a detector for indi­
vidual calcifications. For each level in the pyramid a network is trained, beginning 
with the network at low resolution. The network at a particular pyramid level is 
applied to one pixel at a time in the image at that resolution , and so produces an 
output at each pixel. All of the networks are trained to detect micro calcifications, 
however, at low resolutions the micro calcifications are not directly detectable. To 
achieve better than chance performance, the networks at those levels must learn 
something about the context in which micro calcifications appear. To integrate 
context information with the other features the outputs of hidden units from low 
resolution networks are propagated hierarchically as inputs to networks operating 
at higher resolutions. 

Input to the neural networks come from an integrated feature pyramid (IFF) [lJ. 
To construct the IFP, we used steerable filters [3J to compute local orientation 
energy. The steering properties of these filters enable the direct computation of 
the orientation having maximum energy. We constructed features which represent, 
at each pixel location, the maximum energy (energy at 8rnax) , the energy at the 
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cc HPNN Chicago NN 
A z (7 Az FPF (7FPF A z (7 Az FPF (7FPF 

TPF=l.O TPF=l.O 

1 .93 .03 .24 .11 .88 .04 .50 .11 
2 .94 .02 .21 .11 .91 .02 .43 .10 
3 .94 .03 .39 .19 .91 .03 .48 .19 
4 .93 .03 .48 .15 .90 .05 .56 .21 
5 .93 .03 .51 .06 .88 .05 .68 .21 

Table 1: Comparison of HPNN and Chicago networks . 

orientation perpendicular to emu;]; (ernux - 90°), and the energy at the diagonal 
(energy at ernux - 450 ).l The resulting features are input into the coarse-to-fine 
network hierarchy. 

In examining the truth data for the ROI data set , we found that the experts who 
specified the microcalcification positions often made errors in these positions of 
up to ±2 pixels of the correct position. To take this uncertainty in position into 
account , we used the following error function 

Euop = - L log( 1 - IT (1 - y(X))) - L 10g(1 - y(x)) (1) 
pEPos xEp x ENe y 

which we have called the Uncertain Object Position (UOP) error function [7].2 (y(x) 
is the network's output when applied to position x.) It is essentially the cross­
entropy error , but for positive examples the probability of generating a positive 
output (y( x), in this case) has been replaced by the probability of generating at 
least one positive output in a region or set of pixels p in the image. In our case each 
p is a five-by-five pixel square centered on the location specified by the expert. To 
this we added the standard weight decay regularization term. The regularization 
constant was adjusted to minimize the ten-fold cross-validation error. 

The coarse-to-fine HPNN was applied to each input ROI , and an image was con­
structed from the output of the Level 0 network at each pixel. Each of these pixel 
values is the network 's estimate of the probability that a microcalcification is present 
there. Training and testing were done using as jackknife protocol [5], whereby one 
half of the data (25 TPs and 43 FPs) was used for training and the other half for 
testing. We used five different random splits of the data into training and test sets. 
For a given ROI, the probability map produced by the network was thresholded at 
a given value to produce a binary detection map. Region growing was used to count 
the number of distinct detected regions. The ROI was classified as a positive if the 
number of regions was greater than or equal to a certain cluster criterion. 

Table 1 compares ROC results for the HPNN and another network that had been 
used in the University of Chicago CAD system [9] using five different cluster criterion 
(cc). Reported are the area under the ROC curve (Az), the standard deviation of 
A z across the subsets of the jackknife ((7 AJ, the false posi t ive fraction at a true 
positive fraction of 1.0 (FPF@TPF= 1.0) and the standard deviation of the FPF 
across the subsets of the jackknife ((7FPF). Az and FPF@TPF = 1.0 represent 

1 We found that the energies in the two diagonal directions were nearly identical. 
2Keeler et al. [4] developed a network for object recognition that had some similarities 

to the UOP error. In fact the way in which the outputs of units are combined for their 
error function can be shown to be an approximation to the UOP error. 
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the averages of the subsets of the jackknife. Note that both networks operate best 
when the cluster criterion is set to two. For this case the HPNN has a higher Az 
than the Chicago network while also halving the false positive rate. This difference, 
between the two networks ' Az and F P F values , is statistically significant (z-test; 
PAz = .0018, PFPF = .00001). 

A second set of data was also tested. 150 ROls taken from a clinical prospective 
study and classified as positive by the full Chicago CAD system (including the 
Chicago neural network) were used to test the HPNN. Though the Chicago CAD 
system classified all 150 ROls as positive, only 47 were in fact positive while 103 
were negatives. We applied the HPNN trained on the entire previous data set to this 
new set of ROls. The HPNN was able to reclassify 47/103 negatives as negative, 
without loss in sensitivity (no false negatives were introduced). 

On examining the negative examples rejected by the coarse-to-fine HPNN, we found 
that many of these ROls contained linear, high-contrast structure which would 
otherwise be false positives for the Chicago network. The Chicago neural network 
presumably interprets the "peaks" on the linear structure as calcifications. However 
because the coarse-to-fine HPNN also integrates information from low resolution it 
can associate these "peaks" with the low-resolution linear structure and reject them. 

3 Mass detection 

Although microcalcifications are an important cue for malignant masses in mammo­
grams, they are not visible or even present in all cases. Thus mammographic CAD 
systems include algorithms to directly detect the presence of masses. We have 
started to apply a fine-to-coarse HPNN architecture to detect malignant masses 
in digitized mammograms. Radiologists often distinguish malignant from benign 
masses based on the detailed shape of the mass border and the presence of spicules 
alone the border. Thus to integrate this high resolution information to detect ma­
lignant masses, which are extended objects, we apply the fine-to-coarse HPNN of 
figure lB. 

As for microcalcifications, we apply the HPNN as a post-processor, but hei'e it 
processes the output of the mass-detection component of UofC CAD system. The 
data in our study consists of 72 positive and 100 negative ROls. These are 256-by-
256 pixels and are sampled at 200 micron resolution. 

At each level of the fine-to-coarse HPNN several hidden units process the feature 
images. The outputs of each unit at all of the positions in an image make up a 
new feature image. This is reduced in resolution by the usual pyramid blur-and­
subsample operation to make an input feature image for the network units at the 
next lower resolution. We trained the entire fine-to-coarse HPNN as one network 
instead of training a network for each level, one level at a time. This training is quite 
straightforward. Back-propagating error through the network units is the same 
as in conventional networks. We must also back-propagate through the pyramid 
reduction operation, but this is linear and therefore quite simple. In addition we 
use the same UOP error function (Equation 1) used to train the coarse-to-fine 
architecture. The rationale for this application of the UOP error function is that the 
truth data specifies the location of the center of the mass at the highest resolution. 
However, because of the sub-sampling the center cannot be unambiguously assigned 
to a particular pixel at low resolution . 

The features input to the fine-to-coarse HPNN are filtered versions of the image, 

with filter kernels given by 0/' (r e) = ( q! )1 /2r IPle-r2 /2LIP I(r2)etp1> in polar 
. 'l/q,]1' 71"(q+ lp l)! q 
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Coarse-to-Fine HPNN Fine-to-Coarse HPNN 
Sensitivity Microcalcification Mass 

100% 45% 32% 
95% 47% 36% 
90% 63% 40% 
80% 69% 78% 

Table 2: Detector Specificity (% reduction in false positive rate of UofC CAD 
system) . 

coordinates, with (q, p) E {(O, 1) , (1,0), (0, 2)}. These are combinations of deriva­
tives of Gaussians, and can be written as combinations of separable filter kernels 
(products of purely horizontal and vertical filters) , so they can be computed at 
relatively low cost. They are also easy to steer, since this is just multiplication by 
a complex phase factor. We steered these in the radial and tangential directions 
relative to the tentative mass centers, and used the real and imaginary parts and 
their squares and products as features. The center coordinates of the are generated 
by the earlier stages of the CAD system. These features were extracted at each 
level of the Gaussian pyramid representation of the mass ROI, and used as inputs 
only to the network units at the same level. 

The fine-to-coarse HPNN is quite similar to the convolution network proposed by 
Le Cun, et al [2], however with a few notable differences. The fine-to-coarse HPNN 
receives as inputs preset features extracted from the image (in this case radial 
and tangential gradients) at each resolution, compared to the convolution network, 
whose inputs are the original pixel values at the highest resolution. Secondly, in 
the fine-to- coarse HPNN, the inputs to a hidden unit at a particular position are 
the pixel values at that position in each of the feature images , one pixel value per 
feature image. Thus the HPNN's hidden units do not learn linear filters, except 
as linear combinations of the filters used to form the features. Finally the fine-to­
coarse HPNN is trained using the UOP error function , which is not used in the Le 
Cun network. 

Currently our best performing fine-to-coarse HPNN system for mass detection has 
two hidden units per pyramid level. This gives an ROC area of A z = 0.85 and 
eliminates 36 % of the false-positives at a cost of missing 5 % of the actual positives. 
To improve performance further , we are investigating different regularizers, richer 
feature sets, and more complex architectures, i.e., more hidden units. 

4 Conclusion 

We have presented the application of multi-resolution neural network architectures 
to two problems in computer-aided diagnosis , the detection of micro calcifications 
in mammograms and the direct detection of malignant masses in mammograms. A 
summary of the performance of these architectures is given in Table 2. In the case 
of microcalcifications , the coarse-to-fine HPNN architecture successfully discovered 
large-scale context information that improves the system's performance in detecting 
small objects. A coarse-to-fine HPNN has been directly integrated with the UofC 
CAD system for micro calcification detection and the complete system is undergoing 
clinical evaluation. 

In the case of malignant masses, a fine-to-coarse HPNN architecture was used to 
exploit information from fine resolution detail which could be used to differentiate 
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malignant from benign masses. The results of this network are encouraging, but ad­
ditional improvement is needed. In general, we have found that the multi-resolution 
HPNNs are a useful class of network architecture for exploiting and integrating in­
formation at multiple scales. 
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