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Abstract

We present a probabilistic latent-variable framework for data visu-
alisation, a key feature of which is its applicability to binary and
categorical data types for which few established methods exist. A
variational approximation to the likelihood is exploited to derive a
fast algorithm for determining the model parameters. Illustrations
of application to real and synthetic binary data sets are given.

1 Introduction

Visualisation is a powerful tool in the exploratory analysis of multivariate data. The
rendering of high-dimensional data in two dimensions, while generally implying loss
of information, often reveals interesting structure to the human eye. Standard
dimensionality-reduction methods from multivariate analysis, notably the principal
component projection, are often utilised for this purpose, while techniques such
as ‘projection pursuit’ have been tailored specifically to this end. With the cur-
rent trend for larger databases and the need for effective ‘data mining’ methods,
visualisation is becoming increasingly topical, and recent novel developments in-
clude nonlinear topographic methods (Lowe and Tipping 1997; Bishop, Svensén,
and Williams 1998) and hierarchical combinations of linear models (Bishop and
Tipping 1998). However, a disadvantageous aspect of many proposed techniques
is their applicability only to continuous variables; there are very few such methods
proposed specifically for the visualisation of discrete binary data types, which are
commonplace in real-world datasets.

We approach this difficulty by proposing a probabilistic framework for the visualisa-
tion of arbitrary data types, based on an underlying latent variable density model.
This leads to an algorithm which permits the visualisation of structure within data,
while also defining a generative observation probability model. A further, and



Probabilistic Visualisation of High-Dimensional Binary Data 593

intuitively pleasing, result is that the specialisation of the model to continuous vari-
ables recovers principal component analysis. Continuous, binary and categorical
data types may thus be combined and visualised together within this framework,
but for reasons of space, we concentrate on binary types alone in this paper.

In the next section we outline the proposed latent variable approach, and in Section
3 consider the difficulties involved in estimating the parameters in this model, giving
an efficient variational scheme to this end in Section 4. In Section 5 we illustrate the
application of the model and consider the accuracy of the variational approximation.

2 Latent Variable Models for Visualisation

In an ideal visualisation model, we would wish all of the dependencies between
variables to be evident in the visualisation space, while the information that we lose
in the dimensionality-reduction process should represent “noise”, independent to
each variable. This principle is captured by the following probability density model
for a dataset comprising d-dimensional observation vectors t = (¢1,1%2,...,%4):

d
p(t) = / {_Hp(t,-!x,e)}p(x)dx, (1)

where x is a two-dimensional latent variable vector, the distribution of which must
be a priori specified, and @ are the model parameters. Now, for a given value of x
(or location in the visualisation space), the observations are independent under the
model. (In general, of course, the model and conditional independence assumption
will only hold approximately.) However, the unconditional observation model p(t)
does not, in general, factorise and so can still capture dependencies between the
d variables, given the constraint implied by the use of just two underlying latent
variables. So, having estimated the parameters 8, data could be visualised by
‘inverting’ the generative model using Bayes’ rule: p(x|t) = p(t|x)p(x)/p(t). Each
data point then induces a distribution in the latent space, which for the purposes
of visualisation, we might summarise with the conditional mean value (x|t).

That this form of model can be appropriate for visualisation was demonstrated by
Bishop and Tipping (1998), who showed that if the latent variables are defined to
be independent and Gaussian, x ~ A (0,I), and the conditional observation model
is also Gaussian, t;|x ~ N (W7x + u;, 0?1), then maximum-likelihood estimation of
the model parameters {w;, iu;,02} leads to a model where the the posterior mean
(x|t) is equivalent to a probabilistic principal component projection.

A visualisation method for binary variables now follows naturally. Retaining the
Gaussian latent distribution x ~ A(0,I), we specify an appropriate conditional
distribution for P(#;|x,8). Given that principal components corresponds to a linear
model for continuous data types, we adopt the appropriate generalised linear model
in the binary case:

P(tilx) = o(4:)" {1 —a(4)} ", (2)

where 0(A) = {1+ exp(—A4)} ! and A; = wIx + b; with parameters w; and b;.

3 Maximum-likelihood Parameter Estimation

The proposed model for binary data already exists in the literature under various
guises, most historically as a latent trait model (Bartholomew 1987), although it
is not utilised for data visualisation. While in the case of probabilistic principal
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component analysis, ML parameter estimates can be obtained in closed-form, a dis-
advantageous feature of the binary model is that, with P(¢;|x) defined by (2), the
integral of (1) is analytically intractable and P(t) cannot be computed directly. Fit-
ting a latent trait model thus necessitates a numerical integration, and recent papers
have considered both Gauss-Hermite (Moustaki 1996) and Monte-Carlo sampling
approximations (Mackay 1995; Sammel, Ryan, and Legler 1997).

In this latter case, the log-likelihood for a dataset of N observation vectors
{t1,...,tn} would be approximated by

N L Lo
L’irc:Zln{EZHP(fmlxuwi.bi)} (3)
n=1

=1 i=1
where x;, [ = 1...L, are samples from the two-dimensional latent distribution.

To obtain parameter estimates we may utilise an expectation-maximisation (EM)
approach by noting that (3) is equivalent in form to an L-component latent class
model (Bartholomew 1987) where the component probabilities are mutually con-
strained from (2). Applying standard methodology leads to an E-step which re-
quires computation of NV x L posterior ‘responsibilities’ P(x;|t,), and a logistic
regression M-step which is unfortunately iterative, although it can be performed
relatively efficiently by an iteratively re-weighted least-squares algorithm. Because
of these difficulties in implementation, in the next section we describe a variational
approximation to the likelihood which can be maximised more efficiently.

4 A Variational Approximation to the Likelihood

Jaakkola and Jordan (1997) introduced a variational approximation for the predic-
tive likelihood in a Bayesian logistic regression model and also briefly considered
the “dual” problem, which is closely related to the proposed visualisation model.
In this approach, the integral in (1) is approximated by:

d
Plt) = / {H P(ti|x, Ei)}p(x) dx, (4)

t=1

where

Ptilx, &) = o(&) exp {(Ai — &)/2 + \(&)(4] - €D}, (5)
with 4; = (2¢t; — 1)(wix + b;) and A(&) = {0.5 — 0(&)}/2&. The parameters
& are the ‘variational’ parameters, and this approximation has the property that
P(t;|x, &) < P(t;|x), with equality at & = A;, and thus it follows that P(t) < P(t).
Now because the exponential in (5) is quadratic in x, then the integral in (4), and
also the likelihood, can be computed in closed form. This suggests an alterna-
tive algorithm for finding parameter estimates where we iteratively maximise the
variational approximation to the likelihood. Each iteration of this algorithm is guar-
anteed to increase a lower bound on, but will not necessarily maximise, the true

likelihood. Nevertheless, we would hope that it will be a close approximation, the
accuracy of which is investigated later. At each step in the algorithm, then, we:

1. Obtain the sufficient statistics for the approximated posterior distribution
of latent variables given each observation, p(x,|t»,€,).

2. Optimise the variational parameters ;,, in order to make the approximation
P(t,) as close as possible to P(t,) for all t,.

3. Update the model parameters w; and b; to increase }3(1;).
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Jaakkola and Jordan (1997) give formulae for the above computations, but these
do not include provision for the ‘biases’ b;, and so the necessary expressions are
re-derived below. Note that although we have introduced N x d additional vari-
ational parameters, it is no longer necessary to sample from p(x) and compute
responsibilities, and no iterative logistic regression step is needed.

Computing the Latent Posterior Statistics. From Bayes’ rule, the posterior
approximation p(x,|t,&,,) is Gaussian with covariance and mean given by

d -1
Cn=|1-2) /\(&n)wiw"{] , (6)

i=1

. 1
n, =Chn {Z [tm ik 2A(§in)bi] wi} ; (7)

i=1

Optimising the Variational Parameters. Because P(t) > ?"(t), the variational
approximation can be optimised by maximising P(t,) with respect to each &;,. We
use the EM methodology to obtain updates

o = W (Xa X0 ) Wi + 2b;W] (x5) + b7, (8)

where the angle brackets () denote expectations with respect to fo'(xn|t,,,£f1]d) and

where, from (6) and (7) earlier, the necessary posterior statistics are given by:

(xn) = Up, (g)
(xnXp) = Cp + Bnby. (10)

Since (6) and (7) depend on the variational parameters, C, and p, are computed
followed by the update for each &, from (8). Iteration of this two-stage process
is guaranteed to improve monotonically the approximation of P(t,) and typically
only two iterations are necessary for convergence.

Optimising the Model Parameters. We again use EM to increase the varia-
tional likelihood approximation with respect to w; and b;. Defining

leads to updates for both w; and b; given by:

N “lrw
W = — lz 2,\(51-,,)(52,,2;)] [Z(:m - 1/2)(%)} : (11)
n=1

n=1
where

T
(Rn37) = (C" T ke “1") . (12)
n

5 Visualisation

Synthetic clustered data. We firstly give an example of visualisation of
artificially-generated data to illustrate the operation and features of the method.
Binary data was synthesised by first generating three random 16-bit prototype vec-
tors, where each bit was set with probability 0.5. Next a 600-point dataset was
generated by taking 200 examples of each prototype and inverting each bit with
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probability 0.05. We generated a second dataset in the same manner, but where
the probability of bit inversion was 0.15, simulating more “noise” about each pro-
totype. The final values of p,, from (7) for each data point are plotted in Figure
1. In the left plot for the low-noise dataset, the three clusters are clear, as are the
prototype vectors. On the right, the bit-noise is sufficiently high such that clus-
ters now overlap to a degree and the prototypes are no longer evident. However,
we can elucidate further information from the model by drawing lines representing
P(ti|x) = 0.5, or wix+b; = 0, which may be considered to be ‘decision boundaries’
for each bit. These offer more convincing evidence of the presence of three clusters.
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Figure 1: Visualisation of two synthetic clustered datasets. The three clusters have been
denoted by separate glyphs, the size of which reflects the number of examples whose
posterior means are located at that point in the latent space. In the right plot, lines
corresponding to P(t;|x) = 0.5 have been drawn.

Handwritten digit data. On the left of Figure 2, a visualisation is given of 1000
examples derived from 16 x 16 images of handwritten digit ‘2’s. There is visual
evidence of the natural variability of writing styles in the plot as the posterior latent
means in Figure 2 describe an approximate ‘horseshoe’ structure. On the right of
the figure we examine the nature of this by plotting gray-scale images of the vectors
P(t|x;), where x; are four numbered samples in the visualisation space. These
images illustrate the expected value of each bit given the latent-space location and
demonstrate that the location is indeed indicative of the style of the digit, notably
the presence of a loop.

Accuracy of the variational approximation. To investigate the accuracy of the
approximation, the sampling algorithm of Section 3 for likelihood maximisation was
implemented and applied to the above two datasets. The evolution of error (negative
log-likelihood per data-point) was plotted against time for both algorithms, using
identical initialisations. The ‘true’ error for the variational approach was estimated
using the same 500-point Monte-Carlo sample. Typical results are shown in Figure
3, and the final running time and error (using a sensible stopping criterion) are
given for both datasets in Table 1.

For these two example datasets, the variational algorithm converges considerably
more quickly than in the sampling case, and the difference in final error is relatively
small, particularly so for the larger-dimensionality dataset. The approximation of
the posterior distributions p(x,|t,) is the key factor in the accuracy of the algo-
rithm. In Figure 4, contours of the posterior distribution in the latent space induced
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Digit 2

. o

Figure 2: Left: visualisation of 256-dimensional digit ‘2’ data. Right: gray-scale images
of the conditional probability of each bit at the latent space locations marked.
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Figure 3: Error vs. time for the synthetic data (left) and the digit ‘2’ data (right).

by a typical data point are shown for both algorithms and datasets. This approxi-
mation is more accurate as dimensionality increases (a phenomenon observed with
other datasets too), as the true posterior becomes more Gaussian in form.

6 Conclusions

We have outlined a variational approximation for parameter estimation in a proba-
bilistic visualisation model and although we have only considered its application to
binary variables here, the extension to mixtures of arbitrary data types is readily
implemented. For the two comparisons shown (and others not illustrated here), the
approximation appears acceptably accurate, and particularly so for data of higher
dimensionality. The algorithm is considerably faster than a sampling approach,
which would permit incorporation of multiple models in a more complex hierarchi-
cal architecture, of a sort that has been effectively implemented for visualisation of
continuous variables (Bishop and Tipping 1998).
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Synthetic-16 Digit-256
Time Error Time Error
Variational 7.8 5.14 25.6  30.23
Sampling 331.1 493 | 1204.5 30.19

Table 1: Comparison of final error and running time for the two algorithms.
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Figure 4: True and approximated posteriors for a single example from the synthetic data
set (top) and the digit ‘2’ data (bottom).
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