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A simple learning rule is derived, the VAPS algorithm, which can 
be instantiated to generate a wide range of new reinforcement­
learning algorithms. These algorithms solve a number of open 
problems, define several new approaches to reinforcement learning, 
and unify different approaches to reinforcement learning under a 
single theory. These algorithms all have guaranteed convergence, 
and include modifications of several existing algorithms that were 
known to fail to converge on simple MOPs. These include Q­
learning, SARSA, and advantage learning. In addition to these 
value-based algorithms it also generates pure policy-search 
reinforcement-learning algorithms, which learn optimal policies 
without learning a value function. In addition, it allows policy­
search and value-based algorithms to be combined, thus unifying 
two very different approaches to reinforcement learning into a 
single Value and Policy Search (V APS) algorithm. And these 
algorithms converge for POMDPs without requiring a proper belief 
state . Simulations results are given, and several areas for future 
research are discussed. 

1 CONVERGENCE OF GREEDY EXPLORATION 

Many reinforcement-learning algorithms are known that use a parameterized 
function approximator to represent a value function, and adjust the weights 
incrementally during learning. Examples include Q-learning, SARSA, and 
advantage learning. There are simple MOPs where the original form of these 
algorithms fails to converge, as summarized in Table 1. For the cases with..J, the 
algorithms are guaranteed to converge under reasonable assumptions such as 
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Table 1. Current convergence results for incremental, value-based RL algorithms. 
Residual algorithms changed every X in the first two columns to ..J. 
The new al in this X to a ..J. 

Usually-
distribution distribution greedy 

distribution 

Markov 
chain 

r-----~----~----_+------------.--------

MDP 

POMDP 
r--------:---'''---_+." 

=convergence guaranteed 
X=counterexample is known that either diverges or oscillates between the 

best and worst ible icies. 

decaying learning rates. For the cases with X, there are known counterexamples 
where it will either diverge or osciIlate between the best and worst possible policies, 
which have very-different values. This can happen even with infinite training time 
and slowly-decreasing learning rates (Baird, 95, Gordon, 96). Each X in the first 
two columns can be changed to a ..J and made to converge by using a modified form 
of the algorithm, the residual form (Baird 95). But this is only possible when 
learning with a fixed training distribution, and that is rarely practical. For most 
large problems, it is useful to explore with a policy that is usualIy-greedy with 
respect to the current value function, and that changes as the value function changes. 
In that case (the rightmost column of the chart), the current convergence guarantees 
are not very good. One way to guarantee convergence in alI three columns is to 
modify the algorithm so that it is performing stochastic gradient descent on some 
average error function, where the average is weighted by state-visitation frequencies 
for the current usually-greedy policy. Then the weighting changes as the policy 
changes. It might appear that this gradient is difficult to compute. Consider Q­
learning exploring with a Boltzman distribution that is usually greedy with respect 
to the learned Q function. It seems difficult to calculate gradients, since changing a 
single weight will change many Q values, changing a single Q value will change 
many action-choice probabilities in that state, and changing a single action-choice 
probability may affect the frequency with which every state in the MDP is visited. 
Although this might seem difficult, it is not. Surprisingly, unbiased estimates of the 
gradients of visitation distributions with respect to the weights can be calculated 
quickly, and the resulting algorithms can put a ..J in every case in Table 1. 

2 DERIVATION OF THE V APS EQUATION 

Consider a sequence of transitions observed while following a particular stochastic 
policy on an MDP. Let Sl = {xo,uo,Ro, xt.ut.Rt. ... xl.t.ul_t.RI_t. xtout.RI} be the 
sequence of states, actions, and reinforcements up to time t, where performing 
action UI in state XI yields reinforcement RI and a transition to state XI+I. The 
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stochastic policy may be a function of a vector of weights w. Assume the MOP has 
a single start state named Xo. If the MOP has terminal states, and x, is a terminal 
state, then X'+I=XO. Let S, be the set of all possible sequences from time 0 to t. Let 
e(s,) be a given error function that calculates an error on each time step, such as the 
squared Bellman residual at time t, or some other error occurring at time t. If e is a 
function of the weights, then it must be a smooth function of the weights. Consider 
a period of time starting at time 0 and ending with probability P(endls,) after the 
sequence s, occurs. The probabilities must be such that the expected squared period 
length is finite. Let B be the expected total error during that period, where the 
expectation is weighted according to the state-visitation frequencies generated by 
the given policy: 

T r 
B = I I P(period ends at time T after trajectory Sr) I e(s,) (I) 

,=0 

xc 

= I I e(s,)P(sJ (2) 
1= 0 s, eSt 

where: 

, - I 

pes,) = P(u, I sJP(R, I s,)O P(u, I s,)P(R, I s,)P(S'+1 I s,)fi - P(end Is,)] 
,=0 (3) 

Note that on the first line, for a particular s" the error e(s,) will be added in to B 
once for every sequence that starts with s,. Each of these terms will be weighted by 
the probability of a complete trajectory that starts with s,. The sum of the 
probabilities of all trajectories that start with s, is simply the probability of s, being 
observed, since the period is assumed to end eventually with probability one. So the 
second line equals the first. The third line is the probability of the sequence, of 
which only the P(u,lx,) factor might be a function of w. If so, this probability must 
be a smooth function of the weights and nonzero everywhere. The partial derivative 
of B with respect to w, a particular element of the weight vector w, is: 

(4) 

(5) 

Space here is limited, and it may not be clear from the short sketch of this 
derivation, but summing (5) over an entire period does give an unbiased estimate of 
B, the expected total error during a period. An incremental algorithm to perform 
stochastic gradient descent on B is the weight update given on the left side of Table 
2, where the summation over previous time steps is replaced with a trace T, for each 
weight. This algorithm is more general than previously-published algorithms of this 
form, in that e can be a function of all previous states, actions, and reinforcements, 
rather than just the current reinforcement. This is what allows V APS to do both 
value and policy search. 

Every algorithm proposed in this paper is a special case of the V APS equation on 
the left side of Table 2. Note that no model is needed for this algorithm. The only 
probability needed in the algorithm is the policy, not the transition probability from 
the MOP. This is stochastic gradient descent on B, and the update rule is only 
correct if the observed transitions are sampled from trajectories found by following 
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Table 2. The general YAPS algorithm (left), and several instantiations of it (right). 
This single algorithm includes both value-based and policy-search approaches and 
h . b" d' d . t elr com matlOn, an gives guarantee convergence m every case. 

eSARSA (St) = t £2 (R,_1 + }Q(xt , ut ) - Q(xt_1 , u,-ll 

eQ-learm"g(s,) = 1- E2lRI_1 + y m~ Q(x" u) - Q(x,_1' u,-;l 

~w, = -aL~ e(s,) + e(s,)T,] [RH + r m", A(x" u) -1' A(x,_,. UH ) 1 
e adva"lag, (S,)=fE2 "(~-I) A( ) 

+ A m,:u' X, _I' U 

~T, = ~I In(P(u'_1 I S,_I)) 
eva/lte - 'leraIlO" (S/) = + [ max E[ R' _I + yV (xJ] - V (x/-I) J 

It, 1 

eSARI'A- poh,y (SJ = (t - P)eSARI'A(SJ + pT.b - y' R/J 

the current, stochastic policy. Both e and P should be smooth functions of w, and 
for any given w vector, e should be bounded. The algorithm is simple, but actuaIly 
generates a large class of different algorithms depending on the choice of e and 
when the trace is reset to zero. For a single sequence, sampled by following the 
current policy, the sum of ~w along the sequence will give an unbiased estimate of 
the true gradient, with finite variance. Therefore, during learning, if weight updates 
are made at the end of each trial, and if the weights stay within a bounded region, 
and the learning rate approaches zero, then B wiIl converge with probability one. 
Adding a weight-decay term (a constant times the 2-norm of the weight vector) onto 
B will prevent weight divergence for small initial learning rates. There is no 
guarantee that a global minimum will be found when using general function 
approximators, but at least it will converge. This is true for backprop as well. 

3 INSTANTIATING THE V APS ALGORITHM 

Many reinforcement-learning algorithms are value-based; they try to learn a value 
function that satisfies the BeUman equation . Examples are Q-learning, which learns 
a value function, actor-critic algorithms, which learn a value function and the policy 
which is greedy with respect to it, and TO( 1), which learns a value function based 
on future rewards. Other algorithms are pure policy-search algorithms; they 
directly learn a policy that returns high rewards. These include REINFORCE 
(Williams, 1988), backprop through time, learning automata, and genetic 
algorithms. The algorithms proposed here combine the two approaches: they 
perform Value And Policy Search (YAPS). The ,general VAPS equation is 
instantiated by choosing an expression for e. This can be a Bellman residual 
(yielding value-based), the reinforcement (yielding policy-search), or a linear 
combination of the two (yielding Value And Policy Search). The single VAPS 
update rule on the left side of Table 2 generates a variety of different types of 
algorithms, some of which are described in the foIlowing sections. 

3.1 REDUCING MEAN SQUARED RESIDUAL PER TRIAL 

If the MOP has terminal states, and a trial is the time from the start until a terminal 
state is reached, then it is possible to minimize the expected total error per trial by 
resetting the trace to zero at the start of each trial. Then, a convergent form of 
SARSA, Q-Iearning, incremental value iteration, or advantage learning can be 
generated by choosing e to be the squared Bellman residual, as shown on the right 
side of Table 2. In each case, the expected value is taken over all possible (x/>u"R,) 
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triplets, given St-I' The policy must be a smooth, nonzero function of the weights. 
So it could not be an c-greedy policy that chooses the greedy action with probability 
(I-c) and chooses uniformly otherwise. That would cause a discontinuity in the 
gradient when two Q values in a state were equal. But the policy could be 
something that approaches c-greedy as a positive temperature c approaches zero: 

& 1 + eQ(x.II) l c 

P(u I x) = -;; + (I - &) I (I + eQ(x,u') lc ) 
(6) 

II' 

where n is the number of possible actions in each state. For each instance in Table 2 
other than value iteration, the gradient of e can be estimated using two, independent, 
unbiased estimates of the expected value. For example: 

!, eSARSA (Sf) == e SAR.S:4 (Sf {r¢ !, Q(X'f , U'f ) - !, Q(Xf _l , U f _I )) (7) 

When $=1, this is an estimate of the true gradient. When $<1, this is a residual 
algorithm, as described in (Baird, 96), and it retains guaranteed convergence, but 
may learn more quickly than pure gradient descent for some values of $. Note that 
the gradient of Q(x,u) at time I uses primed variables. That means a new state and 
action at time I were generated independently from the state and action at time 1-1. 
Of course, if the MOP is deterministic, then the primed variables are the same as the 
unprimed. If the MOP is nondeterministic but the model is known, then the model 
must be evaluated one additional time to get the other state. If the model is not 
known, then there are three choices. First, a model could be learned from past data, 
and then evaluated to give this independent sample. Second, the issue could be 
ignored, simply reusing the unprimed variables in place of the primed variables. 
This may affect the quality of the learned function (depending on how random the 
MOP is), but doesn't stop convergence, and be an acceptable approximation in 
practice. Third, all past transitions could be recorded, and the primed variables 
could be found by searching for all the times (Xt-hUt-') has been seen before, and 
randomly choosing one of those transitions and using its successor state and action 
as the primed variables. This is equivalent to learning the certainty equivalence 
model, and sampling from it, and so is a special case of the first choice. For 
extremely large state-action spaces with many starting states, this is likely to give 
the same result in practice as simply reusing the unprimed variables as the primed 
variables. Note, that when weights do not effect the policy at all, these algorithms 
reduce to standard residual algorithms (Baird, 95). 

It is also possible to reduce the mean squared residual per step, rather than per trial. 
This is done by making period lengths independent of the policy, so minimizing 
error per period will also minimize the error per step. For example, a period might 
be defined to be the first 100 steps, after which the traces are reset, and the state is 
returned to the start state. Note that if every state-action pair has a positive chance 
of being seen in the first 100 steps, then this will nol just be solving a finite-horizon 
problem. It will be actually be solving the discounted, infinite-horizon problem, by 
reducing the Bellman residual in every state. But the weighting of the residuals wilI 
be determined only by what happens during the first 100 steps. Many different 
problems can be solved by the V APS algorithm by instantiating the definition of 
"period" in different ways. 

3.2 POLICY-SEARCH AND VALUE-BASED LEARNING 

It is also possible to add a term that tries to maximize reinforcement directly. For 
example, e could be defined to be e.\·ARSA-I'0!Jcy rather than eSARSA. from Table 2, and 
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Figure 1. A POMDP and the number of trials needed to learn it vs. p . 
A combination of policy-search and value-based RL outperforms either alone. 

0.8 

the trace reset to zero after each terminal state is reached. The constant b does not 
affect the expected gradient, but does affect the noise distribution, as discussed in 
(Williams, 88). When P=O, the algorithm will try to learn a Q function that satisfies 
the Bellman equation, just as before. When P=I, it directly learns a policy that will 
minimize the expected total discounted reinforcement. The resulting "Q function" 
may not even be close to containing true Q values or to satisfying the Bellman 
equation, it will just give a good policy . When P is in between, this algorithm tries 
to both satisfy the Bellman equation and give good greedy policies. A similar 
modification can be made to any of the algorithms in Table 2. In the special case 
where P=I, this algorithm reduces to the REINFORCE algorithm (Williams, 1988). 
REINFORCE has been rederived for the special case of gaussian action distributions 
(Tresp & Hofman, 1995), and extensions of it appear in (Marbach, 1998). This case 
of pure policy search is particularly interesting, because for P=I , there is no need 
for any kind of model or of generating two independent successors. Other 
algorithms have been proposed for finding policies directly, such as those given in 
(Gullapalli, 92) and the various algorithms from learning automata theory 
summarized in (Narendra & Thathachar, 89). The V APS algorithms proposed here 
appears to be the first one unifying these two approaches to reinforcement learning, 
finding a value function that both approximates a Bellman-equation solution and 
directly optimizes the greedy policy. 

Figure 1 shows simulation results for the combined algorithm. A run is said to have 
learned when the greedy policy is optimal for 1000 consecutive trials. The graph 
shows the average plot of 100 runs, with different initial random weights between 
± 10.6 . The learning rate was optimized separately for each p value. R= 1 when 
leaving state A, R=2 when leaving state B or entering end, and R=O otherwise. y=0.9. 
The algorithm used was the modified Q-Iearning from Table 2, with exploration as 
in equation 13 , and q>=c= l, b=O, c=O.1. States A and B share the same parameters, 
so ordinary SARSA or greedy Q-Iearning could never converge, as shown in 
(Gordon, 96). When p=O (pure value-based), the new algorithm converges, but of 
course it cannot learn the optimal policy in the start state, since those two Q values 
learn to be equal. When P=1 (pure policy-search), learning converges to optimality, 
but slowly, since there is no value function caching the results in the long sequence 
of states near the end. By combining the two approaches, the new algorithm learns 
much more quickly than either alone. 

It is interesting that the V APS algorithms described in the last three sections can be 
applied directly to a Partially Observable Markov Decision Process (POMDP), 
where the true state is hidden, and all that is available on each time step is an 
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ambiguous "observation", which is a function of the true state . Normally, an 
algorithm such as SARSA only has guaranteed convergance when applied to an 
MOP. The V APS algorithms will converge in such cases. 

4 CONCLUSION 

A new algorithm has been presented. Special cases of it give new algorithms 
similar to Q-Iearning, SARSA, and advantage learning, but with guaranteed 
convergence for a wider range of problems than was previously possible, including 
POMOPs. For the first time, these can be guaranteed to converge, even when the 
exploration policy changes during learning. Other special cases allow new 
approaches to reinforcement learning, where there is a tradeoff between satisfying 
the Bellman equation and improving the greedy policy. For one MOP, simulation 
showed that this combined algorithm learned more quickly than either approach 
alone. This unified theory, unifying for the first time both value-based and policy­
search reinforcement learning, is of theoretical interest, and also was of practical 
value for the simulations performed. Future research with this unified framework 
may be able to empirically or analytically address the old question of when it is 
better to learn value functions and when it is better to learn the policy directly. It 
may also shed light on the new question, of when it is best to do both at once. 
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