
Gradient Descent for General
Reinforcement Learning

Leemon Baird
leemon@cs.cmu.edu

www.cs.cmu.edu/- Ieemon
Computer Science Department

5000 Forbes Avenue
Carnegie Mellon University
Pittsburgh, PA 15213-3891

Abstract

Andrew Moore
awm@cs.cmu.edu

www.cs.cmu.edu/-awm
Computer Science Department

5000 Forbes Avenue
Carnegie Mellon University
Pittsburgh, PA 15213-3891

A simple learning rule is derived, the VAPS algorithm, which can
be instantiated to generate a wide range of new reinforcement­
learning algorithms. These algorithms solve a number of open
problems, define several new approaches to reinforcement learning,
and unify different approaches to reinforcement learning under a
single theory. These algorithms all have guaranteed convergence,
and include modifications of several existing algorithms that were
known to fail to converge on simple MOPs. These include Q­
learning, SARSA, and advantage learning. In addition to these
value-based algorithms it also generates pure policy-search
reinforcement-learning algorithms, which learn optimal policies
without learning a value function. In addition, it allows policy­
search and value-based algorithms to be combined, thus unifying
two very different approaches to reinforcement learning into a
single Value and Policy Search (V APS) algorithm. And these
algorithms converge for POMDPs without requiring a proper belief
state . Simulations results are given, and several areas for future
research are discussed.

1 CONVERGENCE OF GREEDY EXPLORATION

Many reinforcement-learning algorithms are known that use a parameterized
function approximator to represent a value function, and adjust the weights
incrementally during learning. Examples include Q-learning, SARSA, and
advantage learning. There are simple MOPs where the original form of these
algorithms fails to converge, as summarized in Table 1. For the cases with..J, the
algorithms are guaranteed to converge under reasonable assumptions such as

Gradient Descent for General Reinforcement Learning 969

Table 1. Current convergence results for incremental, value-based RL algorithms.
Residual algorithms changed every X in the first two columns to ..J.
The new al in this X to a ..J.

Usually-
distribution distribution greedy

distribution

Markov
chain

r-----~----~----_+------------.--------

MDP

POMDP
r--------:---'''---_+."

=convergence guaranteed
X=counterexample is known that either diverges or oscillates between the

best and worst ible icies.

decaying learning rates. For the cases with X, there are known counterexamples
where it will either diverge or osciIlate between the best and worst possible policies,
which have very-different values. This can happen even with infinite training time
and slowly-decreasing learning rates (Baird, 95, Gordon, 96). Each X in the first
two columns can be changed to a ..J and made to converge by using a modified form
of the algorithm, the residual form (Baird 95). But this is only possible when
learning with a fixed training distribution, and that is rarely practical. For most
large problems, it is useful to explore with a policy that is usualIy-greedy with
respect to the current value function, and that changes as the value function changes.
In that case (the rightmost column of the chart), the current convergence guarantees
are not very good. One way to guarantee convergence in alI three columns is to
modify the algorithm so that it is performing stochastic gradient descent on some
average error function, where the average is weighted by state-visitation frequencies
for the current usually-greedy policy. Then the weighting changes as the policy
changes. It might appear that this gradient is difficult to compute. Consider Q­
learning exploring with a Boltzman distribution that is usually greedy with respect
to the learned Q function. It seems difficult to calculate gradients, since changing a
single weight will change many Q values, changing a single Q value will change
many action-choice probabilities in that state, and changing a single action-choice
probability may affect the frequency with which every state in the MDP is visited.
Although this might seem difficult, it is not. Surprisingly, unbiased estimates of the
gradients of visitation distributions with respect to the weights can be calculated
quickly, and the resulting algorithms can put a ..J in every case in Table 1.

2 DERIVATION OF THE V APS EQUATION

Consider a sequence of transitions observed while following a particular stochastic
policy on an MDP. Let Sl = {xo,uo,Ro, xt.ut.Rt. ... xl.t.ul_t.RI_t. xtout.RI} be the
sequence of states, actions, and reinforcements up to time t, where performing
action UI in state XI yields reinforcement RI and a transition to state XI+I. The

970 L. Baird and A. W. Moore

stochastic policy may be a function of a vector of weights w. Assume the MOP has
a single start state named Xo. If the MOP has terminal states, and x, is a terminal
state, then X'+I=XO. Let S, be the set of all possible sequences from time 0 to t. Let
e(s,) be a given error function that calculates an error on each time step, such as the
squared Bellman residual at time t, or some other error occurring at time t. If e is a
function of the weights, then it must be a smooth function of the weights. Consider
a period of time starting at time 0 and ending with probability P(endls,) after the
sequence s, occurs. The probabilities must be such that the expected squared period
length is finite. Let B be the expected total error during that period, where the
expectation is weighted according to the state-visitation frequencies generated by
the given policy:

T r
B = I I P(period ends at time T after trajectory Sr) I e(s,) (I)

,=0

xc

= I I e(s,)P(sJ (2)
1= 0 s, eSt

where:

, - I

pes,) = P(u, I sJP(R, I s,)O P(u, I s,)P(R, I s,)P(S'+1 I s,)fi - P(end Is,)]
,=0 (3)

Note that on the first line, for a particular s" the error e(s,) will be added in to B
once for every sequence that starts with s,. Each of these terms will be weighted by
the probability of a complete trajectory that starts with s,. The sum of the
probabilities of all trajectories that start with s, is simply the probability of s, being
observed, since the period is assumed to end eventually with probability one. So the
second line equals the first. The third line is the probability of the sequence, of
which only the P(u,lx,) factor might be a function of w. If so, this probability must
be a smooth function of the weights and nonzero everywhere. The partial derivative
of B with respect to w, a particular element of the weight vector w, is:

(4)

(5)

Space here is limited, and it may not be clear from the short sketch of this
derivation, but summing (5) over an entire period does give an unbiased estimate of
B, the expected total error during a period. An incremental algorithm to perform
stochastic gradient descent on B is the weight update given on the left side of Table
2, where the summation over previous time steps is replaced with a trace T, for each
weight. This algorithm is more general than previously-published algorithms of this
form, in that e can be a function of all previous states, actions, and reinforcements,
rather than just the current reinforcement. This is what allows V APS to do both
value and policy search.

Every algorithm proposed in this paper is a special case of the V APS equation on
the left side of Table 2. Note that no model is needed for this algorithm. The only
probability needed in the algorithm is the policy, not the transition probability from
the MOP. This is stochastic gradient descent on B, and the update rule is only
correct if the observed transitions are sampled from trajectories found by following

Gradient Descent for General Reinforcement Learning 971

Table 2. The general YAPS algorithm (left), and several instantiations of it (right).
This single algorithm includes both value-based and policy-search approaches and
h . b" d' d . t elr com matlOn, an gives guarantee convergence m every case.

eSARSA (St) = t £2 (R,_1 + }Q(xt , ut) - Q(xt_1 , u,-ll

eQ-learm"g(s,) = 1- E2lRI_1 + y m~ Q(x" u) - Q(x,_1' u,-;l

~w, = -aL~ e(s,) + e(s,)T,] [RH + r m", A(x" u) -1' A(x,_,. UH) 1
e adva"lag, (S,)=fE2 "(~-I) A()

+ A m,:u' X, _I' U

~T, = ~I In(P(u'_1 I S,_I))
eva/lte - 'leraIlO" (S/) = + [max E[R' _I + yV (xJ] - V (x/-I) J

It, 1

eSARI'A- poh,y (SJ = (t - P)eSARI'A(SJ + pT.b - y' R/J

the current, stochastic policy. Both e and P should be smooth functions of w, and
for any given w vector, e should be bounded. The algorithm is simple, but actuaIly
generates a large class of different algorithms depending on the choice of e and
when the trace is reset to zero. For a single sequence, sampled by following the
current policy, the sum of ~w along the sequence will give an unbiased estimate of
the true gradient, with finite variance. Therefore, during learning, if weight updates
are made at the end of each trial, and if the weights stay within a bounded region,
and the learning rate approaches zero, then B wiIl converge with probability one.
Adding a weight-decay term (a constant times the 2-norm of the weight vector) onto
B will prevent weight divergence for small initial learning rates. There is no
guarantee that a global minimum will be found when using general function
approximators, but at least it will converge. This is true for backprop as well.

3 INSTANTIATING THE V APS ALGORITHM

Many reinforcement-learning algorithms are value-based; they try to learn a value
function that satisfies the BeUman equation . Examples are Q-learning, which learns
a value function, actor-critic algorithms, which learn a value function and the policy
which is greedy with respect to it, and TO(1), which learns a value function based
on future rewards. Other algorithms are pure policy-search algorithms; they
directly learn a policy that returns high rewards. These include REINFORCE
(Williams, 1988), backprop through time, learning automata, and genetic
algorithms. The algorithms proposed here combine the two approaches: they
perform Value And Policy Search (YAPS). The ,general VAPS equation is
instantiated by choosing an expression for e. This can be a Bellman residual
(yielding value-based), the reinforcement (yielding policy-search), or a linear
combination of the two (yielding Value And Policy Search). The single VAPS
update rule on the left side of Table 2 generates a variety of different types of
algorithms, some of which are described in the foIlowing sections.

3.1 REDUCING MEAN SQUARED RESIDUAL PER TRIAL

If the MOP has terminal states, and a trial is the time from the start until a terminal
state is reached, then it is possible to minimize the expected total error per trial by
resetting the trace to zero at the start of each trial. Then, a convergent form of
SARSA, Q-Iearning, incremental value iteration, or advantage learning can be
generated by choosing e to be the squared Bellman residual, as shown on the right
side of Table 2. In each case, the expected value is taken over all possible (x/>u"R,)

972 L. Baird and A. W Moore

triplets, given St-I' The policy must be a smooth, nonzero function of the weights.
So it could not be an c-greedy policy that chooses the greedy action with probability
(I-c) and chooses uniformly otherwise. That would cause a discontinuity in the
gradient when two Q values in a state were equal. But the policy could be
something that approaches c-greedy as a positive temperature c approaches zero:

& 1 + eQ(x.II) l c

P(u I x) = -;; + (I - &) I (I + eQ(x,u') lc)
(6)

II'

where n is the number of possible actions in each state. For each instance in Table 2
other than value iteration, the gradient of e can be estimated using two, independent,
unbiased estimates of the expected value. For example:

!, eSARSA (Sf) == e SAR.S:4 (Sf {r¢ !, Q(X'f , U'f) - !, Q(Xf _l , U f _I)) (7)

When $=1, this is an estimate of the true gradient. When $<1, this is a residual
algorithm, as described in (Baird, 96), and it retains guaranteed convergence, but
may learn more quickly than pure gradient descent for some values of $. Note that
the gradient of Q(x,u) at time I uses primed variables. That means a new state and
action at time I were generated independently from the state and action at time 1-1.
Of course, if the MOP is deterministic, then the primed variables are the same as the
unprimed. If the MOP is nondeterministic but the model is known, then the model
must be evaluated one additional time to get the other state. If the model is not
known, then there are three choices. First, a model could be learned from past data,
and then evaluated to give this independent sample. Second, the issue could be
ignored, simply reusing the unprimed variables in place of the primed variables.
This may affect the quality of the learned function (depending on how random the
MOP is), but doesn't stop convergence, and be an acceptable approximation in
practice. Third, all past transitions could be recorded, and the primed variables
could be found by searching for all the times (Xt-hUt-') has been seen before, and
randomly choosing one of those transitions and using its successor state and action
as the primed variables. This is equivalent to learning the certainty equivalence
model, and sampling from it, and so is a special case of the first choice. For
extremely large state-action spaces with many starting states, this is likely to give
the same result in practice as simply reusing the unprimed variables as the primed
variables. Note, that when weights do not effect the policy at all, these algorithms
reduce to standard residual algorithms (Baird, 95).

It is also possible to reduce the mean squared residual per step, rather than per trial.
This is done by making period lengths independent of the policy, so minimizing
error per period will also minimize the error per step. For example, a period might
be defined to be the first 100 steps, after which the traces are reset, and the state is
returned to the start state. Note that if every state-action pair has a positive chance
of being seen in the first 100 steps, then this will nol just be solving a finite-horizon
problem. It will be actually be solving the discounted, infinite-horizon problem, by
reducing the Bellman residual in every state. But the weighting of the residuals wilI
be determined only by what happens during the first 100 steps. Many different
problems can be solved by the V APS algorithm by instantiating the definition of
"period" in different ways.

3.2 POLICY-SEARCH AND VALUE-BASED LEARNING

It is also possible to add a term that tries to maximize reinforcement directly. For
example, e could be defined to be e.\·ARSA-I'0!Jcy rather than eSARSA. from Table 2, and

Gradient Descent for General Reinforcement Learning 973

10000 ,--------------,

{Jl

ca ._ 1000
I-<

E-

100 -t----r---,...---,...-----l

o 0.2 0.4

Beta
0.6

Figure 1. A POMDP and the number of trials needed to learn it vs. p .
A combination of policy-search and value-based RL outperforms either alone.

0.8

the trace reset to zero after each terminal state is reached. The constant b does not
affect the expected gradient, but does affect the noise distribution, as discussed in
(Williams, 88). When P=O, the algorithm will try to learn a Q function that satisfies
the Bellman equation, just as before. When P=I, it directly learns a policy that will
minimize the expected total discounted reinforcement. The resulting "Q function"
may not even be close to containing true Q values or to satisfying the Bellman
equation, it will just give a good policy . When P is in between, this algorithm tries
to both satisfy the Bellman equation and give good greedy policies. A similar
modification can be made to any of the algorithms in Table 2. In the special case
where P=I, this algorithm reduces to the REINFORCE algorithm (Williams, 1988).
REINFORCE has been rederived for the special case of gaussian action distributions
(Tresp & Hofman, 1995), and extensions of it appear in (Marbach, 1998). This case
of pure policy search is particularly interesting, because for P=I , there is no need
for any kind of model or of generating two independent successors. Other
algorithms have been proposed for finding policies directly, such as those given in
(Gullapalli, 92) and the various algorithms from learning automata theory
summarized in (Narendra & Thathachar, 89). The V APS algorithms proposed here
appears to be the first one unifying these two approaches to reinforcement learning,
finding a value function that both approximates a Bellman-equation solution and
directly optimizes the greedy policy.

Figure 1 shows simulation results for the combined algorithm. A run is said to have
learned when the greedy policy is optimal for 1000 consecutive trials. The graph
shows the average plot of 100 runs, with different initial random weights between
± 10.6 . The learning rate was optimized separately for each p value. R= 1 when
leaving state A, R=2 when leaving state B or entering end, and R=O otherwise. y=0.9.
The algorithm used was the modified Q-Iearning from Table 2, with exploration as
in equation 13 , and q>=c= l, b=O, c=O.1. States A and B share the same parameters,
so ordinary SARSA or greedy Q-Iearning could never converge, as shown in
(Gordon, 96). When p=O (pure value-based), the new algorithm converges, but of
course it cannot learn the optimal policy in the start state, since those two Q values
learn to be equal. When P=1 (pure policy-search), learning converges to optimality,
but slowly, since there is no value function caching the results in the long sequence
of states near the end. By combining the two approaches, the new algorithm learns
much more quickly than either alone.

It is interesting that the V APS algorithms described in the last three sections can be
applied directly to a Partially Observable Markov Decision Process (POMDP),
where the true state is hidden, and all that is available on each time step is an

974 L. Baird and A. W Moore

ambiguous "observation", which is a function of the true state . Normally, an
algorithm such as SARSA only has guaranteed convergance when applied to an
MOP. The V APS algorithms will converge in such cases.

4 CONCLUSION

A new algorithm has been presented. Special cases of it give new algorithms
similar to Q-Iearning, SARSA, and advantage learning, but with guaranteed
convergence for a wider range of problems than was previously possible, including
POMOPs. For the first time, these can be guaranteed to converge, even when the
exploration policy changes during learning. Other special cases allow new
approaches to reinforcement learning, where there is a tradeoff between satisfying
the Bellman equation and improving the greedy policy. For one MOP, simulation
showed that this combined algorithm learned more quickly than either approach
alone. This unified theory, unifying for the first time both value-based and policy­
search reinforcement learning, is of theoretical interest, and also was of practical
value for the simulations performed. Future research with this unified framework
may be able to empirically or analytically address the old question of when it is
better to learn value functions and when it is better to learn the policy directly. It
may also shed light on the new question, of when it is best to do both at once.

Acknowledgments

This research was sponsored in part by the U.S. Air Force.

References

Baird, L. C. (1995) . Residual Algorithms: Reinforcement Learning with Function
Approximation. In Armand Prieditis & Stuart Russell , eds. Machine Learning: Proceedings
of the Twelfth International Conference, 9- 1 2 July, Morgan Kaufman Publishers, San
Francisco, CA.

Gordon, G. (1996). "Stable fitted reinforcement learning". In G. Tesauro, M. Mozer, and M.
Hasselmo (eds.), Advances in Neural Information Processing Systems 8, pp. 1052-1058.
MIT Press, Cambridge, MA.

Gullapalli, V. (1992). Reinforcement Learning and Its Application to Control. Dissertation
and COINS Technical Report 92-10, University of Massachusetts, Amherst, MA.

Kaelbling, L. P ., Littman, M. L. & Cassandra, A., " Planning and Acting in Partially
Observable Stochastic Domains". Artificial Intelligence, to appear. Available now at
http ://www.cs.brown.edu/people/ lpk.

Marbach, P. (1998). Simulation-Based Optimization of Markov Decision Processes. Thesis
LIDS-TH 2429, Massachusetts Institute of Technology.

McCallum (1995), A. Reinforcement learning with selective perception and hidden state.
Dissertation, Department of Computer Science, UniverSity of Rochester, Rochester, NY.

Narendra, K .. & Thathachar, M.A.L. (1989). Learning automata: An introduction . Prentice
Hall, Englewood Cliffs, NJ.

Tresp, V., & R. Hofman (1995). "Missing and noisy data in nonlinear time-series
prediction". In Proceedings of Neural Networks for Signal Processing 5, F. Girosi , J.
Makhoul, E. Manolakos and E. Wilson, eds., IEEE Signal Processing Society, New York,
New York, 1995. pp. 1-10.

Williams, R. J. (1988). Toward a theory of reinforcement-learning connectionist systems.
Technical report NU-CCS-88-3, Northeastern University, Boston, MA.

