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Abstract

We analyze the asymptotic behavior of autoregressive neural net-
work (AR-NN) processes using techniques from Markov chains and
non-linear time series analysis. It is shown that standard AR-NNs
without shortcut connections are asymptotically stationary. If lin-
ear shortcut connections are allowed, only the shortcut weights
determine whether the overall system is stationary, hence standard
conditions for linear AR processes can be used.

1 Introduction

In this paper we consider the popular class of nonlinear autoregressive processes
driven by additive noise, which are defined by stochastic difference equations of
form

& =9g(Ee=1,0.,8t=p,0) + ¢ (1)

where ¢; is an iid. noise process. If g(---,#) is a feedforward neural network with
parameter (“weight”) vector 6, we call Equation 1 an autoregressive neural network
process of order p, short AR-NN(p) in the following.

AR-NNs are a natural generalization of the classic linear autoregressive AR(p) pro-
cess

E=o€p—1+ -+ aple_p + €. (2)

See, e.g., Brockwell & Davis (1987) for a comprehensive introduction into AR and
ARMA (autoregressive moving average) models.
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One of the most central questions in linear time series theory is the stationarity of
the model, i.e., whether the probabilistic structure of the series is constant over time
or at least asymptotically constant (when not started in equilibrium). Surprisingly,
this question has not gained much interest in the NN literature, especially there
are—up to our knowledge—no results giving conditions for the stationarity of AR-
NN models. There are results on the stationarity of Hopfield nets (Wang & Sheng,
1996), but these nets cannot be used to estimate conditional expectations for time
series prediction.

The rest of this paper is organized as follows: In Section 2 we recall some results
from time series analysis and Markov chain theory defining the relationship between
a time series and its associated Markov chain. In Section 3 we use these results to
establish that standard AR-NN models without shortcut connections are stationary.
We also give conditions for AR-NN models with shortcut connections to be station-
ary. Section 4 examines the NN modeling of an important class of non-stationary
time series, namely integrated series. All proofs are deferred to the appendix.

2 Some Time Series and Markov Chain Theory

2.1 Stationarity

Let & denote a time series generated by a (possibly nonlinear) autoregressive pro-
cess as defined in (1). If IE¢, = 0, then g equals the conditional expectation
IE(&|ét-1,...,8—p) and g(&¢—1,...,&—p) is the best prediction for & in the mean
square sense.

If we are interested in the long term properties of the series, we may ask whether
certain features such as mean or variance change over time or remain constant.
The time series is called weakly stationary if IE§; = p and cov(&,&i4n) = Ya, Vi,
i.e., mean and covariances do not depend on the time ¢{. A stronger criterion is
that the whole distribution (and not only mean and covariance) of the process does
not depend on the time, in this case the series is called strictly stationary. Strong
stationarity implies weak stationarity if the second moments of the series exist. For
details see standard time series textbooks such as Brockwell & Davis (1987).

If & is strictly stationary, then IP(§; € A) = 7(A), Vt and n(-) is called the stationary
distribution of the series. Obviously the series can only be stationary from the
beginning if it is started with the stationary distribution such that &§& ~ . If
it is not started with m, e.g., because £y 1s a constant, then we call the series
asymptotically stationary if it converges to its stationary distribution:

lim (&, € A) = (A)

2.2 Time Series as Markov Chains

Using the notation

1 = (cfz—l, - yEt—p)f (3]
G(ze-1) = (9(ze=1),&=1,. .., E—pt1)’ (4)
€ = (Eg,o,. F .,0)JI (5)

we can write scalar autoregressive models of order p such as (1) or (2) as a first
order vector model

I =G($a-1)+€t (6)
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with z;,e; € R? (e.g., Chan & Tong, 1985). If we write
p"(z,A) = P{zyyn € Alz, =z}
p(z,4) = pl (2, A)

for the probability of going from point = to set A € B in n steps, then {z,} with
p(z, A) forms a Markov chain with state space (RP,B, A), where B are the Borel
sets on R? and A is the usual Lebesgue measure.

The Markov chain {z:} is called @-irreducible, if for some o-finite measure ¢ on

(RP, B, ))
VzeRP:  p'(z,4)>0
n=1

whenever ¢(A) > 0. This means essentially, that all parts of the state space can be
reached by the Markov chain irrespective of the starting point. Another important
property of Markov chains is aperiodicity, which loosely speaking means that there
are no (infinitely often repeated) cycles. See, e.g., Tong (1990) for details.

The Markov chain {z,} is called geometrically ergodic, if there exists a probability
measure 7(A) on (RP B, A) and a p > 1 such that

Vz € RP: lim p"|[p"(z, ) —=(-)|| =0
n—+00
where || - || denotes the total variation. Then 7 satisfies the invariance equation

m(A) = fp(:c, A)m(dz), VAeB

There is a close relationship between a time series and its associated Markov chain.
If the Markov chain is geometrically ergodic, then its distribution will converge to
7 and the time series is asymptotically stationary. If the time series is started with
distribution 7, i.e., 2o ~ m, then the series {;} is strictly stationary.

3 Stationarity of AR-NIN Models

We now apply the concepts defined in Section 2 to the case where g is defined by
a neural network. Let z denote a p-dimensional input vector, then we consider the
following standard network architectures:

Single hidden layer perceptrons:
9(z) =0+ Y_ Bio(ai + ajz) (7)

where «;, 8; and 7o are scalar weights, a; are p-dimensional weight vectors,
and o(-) is a bounded sigmoid function such as tanh(:).

Single hidden layer perceptrons with shortcut connections:
9(z) =y +cz+)_ Bio(ai + dix) (8)
i

where ¢ is an additional weight vector for shortcut connections between
inputs and output. In this case we define the characteristic polynomial ¢(z)
associated with the linear shortcuts as

e(z)=1—crz—cyz®—...— 2P, z€C.
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Radial basis function networks:

g(z) =y + z Bid(ailz — m;]) (9)

where m; are center vectors and ¢(---) is one of the usual bounded radial
basis functions such as ¢(z) = exp(—z?).

Lemma 1 Let {z,} be defined by (6), let IE|e,| < oo and let the PDF of € be
positive everywhere in R. Then if g is defined by any of (7), (8) or (9), the Markov
chain {z,} is ¢-irreducible and aperiodic.

Lemma 1 basically says that the state space of the Markov chain, i.e., the points that
can be reached, cannot be reduced depending on the starting point. An example
for a reducible Markov chain would be a series that is always positive if only zo > 0
(and negative otherwise). This cannot happen in the AR-NN(p) case due to the
unbounded additive noise term.

Theorem 1 Let {£;} be defined by (1), {x:} by (6), further let IE|e;| < oo and the
PDF of €, be positive everywhere in R. Then

1. If g is a network without linear shortcuts as defined in (7) and (9), then
{z+} is geometrically ergodic and {&:} is asymptotically stationary.

2. If g is a network with linear shortcuts as defined in (8) and additionally
c(z) #0,Vz € C: |z| < 1, then {z:} is geometrically ergodic and {;:} is
asymptotically stationary.

The time series {{;} remains stationary if we allow for more than one hidden layer
(— multi layer perceptron, MLP) or non-linear output units, as long as the overall
mapping has bounded range. An MLP with shortcut connections combines a (pos-
sibly non-stationary) linear AR(p) process with a non-linear stationary NN part.
Thus, the NN part can be used to model non-linear fluctuations around a linear
process like a random walk.

The only part of the network that controls whether the overall process is stationary
are the linear shortcut connections (if present). If there are no shortcuts, then the
process is always stationary. With shortcuts, the usual test for stability of a linear
system applies.

4 Integrated Models

An important method in classic time series analysis is to. first transform a non-
stationary series into a stationary one and then model the remainder by a stationary
process. The probably most popular models of this kind are autoregressive inte-
grated moving average (ARIMA) models, which can be transformed into stationary
ARMA processes by simple differencing,.

Let A* denote the k-th order difference operator
AE; — fs = ft-l (10)
A%, A —&—1) =& — 26e—1 + &2 (11)

Ak,

I

k
A(A---(A&) =D (-1)" (::) §t—n (12)
n=0
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with A’ = A. E.g., a standard random walk &, = & _1+¢; is non-stationary because
of the growing variance, but can be transformed into the iid (and hence stationary)
noise process €; by taking first differences.

If a time series is non-stationary, but can be transformed into a stationary series
by taking k-th differences, we call the series integrated of order k. Standard MLPs
or RBFs without shortcuts are asymptotically stationary. It is therefore important
to take care that these networks are only used to model stationary processes. Of
course the network can be trained to mimic a non-stationary process on a finite time
interval, but the out-of-sample or prediction performance will be poor, because the
network inherently cannot capture some important features of the process. One way
to overcome this problem is to first transform the process into a stationary series
(e.g., by differencing an integrated series) and train the network on the transformed
series (Chng et al., 1996).

As differencing is a linear operation, this transformation can also be easily incor-
porated into the network by choosing the shortcut connections and weights from
input to hidden units accordingly. Assume we want to model an integrated series
of integration order k, such that

Akﬁ: = Q(Akfz—l. cony Akf»—p) + €
where A*¢, is stationary. By (12) this is equivalent to

k
& = Z(—l)“*(ﬁ)eg"ﬁ-gm*&_l,...,A"eth,,)m
n=1
- k
= 20 (B ent a6t bimpr) 4
n=1

which (for p > k) can be modeled by an MLP with shortcut connections as defined
by (8) where the shortcut weight vector ¢ is fized to

(i) (mosmess

and § is such that §(&-1,...,&—p—k) = 9(AFz¢_1). This is always possible and
can basically be obtained by adding ¢ to all weights between input and first hidden
layer of g.

An AR-NN(p) can model integrated series up to integration order p. If the order
of integration is known, the shortcut weights can either be fixed, or the differenced
series is used as input. If the order is unknown, we can also train the complete
network including the shortcut connections and implicitly estimate the order of
integration. After training the final model can be checked for stationarity by looking
at the characteristic roots of the polynomial defined by the shortcut connections.

4.1 Fractional Integration

Up to now we have only considered integrated series with positive integer order of
integration, i.e., k € N. In the last years models with fractional integration order
became very popular (again). Series with integration order of 0.5 < k < 1 can
be shown to exhibit self-similar or fractal behavior, and have long memory. These
type of processes were introduced by Mandelbrot in a series of paper modeling river
flows, e.g., see Mandelbrot & Ness (1968). More recently, self-similar processes were
used to model Ethernet traffic by Leland et al. (1994). Also some financial time
series such as foreign exchange data series exhibit long memory and self-similarity.
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The fractional differencing operator A¥ k € [—1, 1] is defined by the series expansion

_ I'(—k+n) .
Akft = nz=: I‘{—-k)[‘(ﬂ + 1)‘53—1’1 (13)

which is obtained from the Taylor series of (1 — z)*¥. For k > 1 we first use Equa-
tion (12) and then the above series for the fractional remainder. For practical
computation, the series (13) is of course truncated at some term n = N. An AR-
NN(p) model with shortcut connections can approximate the series up to the first
p terms.

5 Summary

We have shown that AR-NN models using standard NN architectures without short-
cuts are asymptotically stationary. If linear shortcuts between inputs and outputs
are included—which many popular software packages have already implemented—
then only the weights of the shortcut connections determine if the overall system
is stationary. It is also possible to model many integrated time series by this kind
of networks. The asymptotic behavior of AR-NNs is especially important for pa-
rameter estimation, predictions over larger intervals of time, or when using the
network to generate artificial time series. Limiting (normal) distributions of pa-
rameter estimates are only guaranteed for stationary series. We therefore always
recommend to transform a non-stationary series to a stationary series if possible
(e.g., by differencing) before training a network on it.

Another important aspect of stationarity is that a single trajectory displays the
complete probability law of the process. If we have observed one long enough tra-
jectory of the process we can (in theory) estimate all interesting quantities of the
process by averaging over time. This need not be true for non-stationary processes
in general, where some quantities may only be estimated by averaging over several
independent trajectories. E.g., one might train the network on an available sam-
ple and then use the trained network afterwards—driven by artificial noise from a
random number generator—to generate new data with similar properties than the
training sample. The asymptotic stationarity guarantees that the AR-NN model
cannot show “explosive” behavior or growing variance with time.

We currently are working on extensions of this paper in several directions. AR-NN
processes can be shown to be strong mixing (the memory of the process vanishes
exponentially fast) and have autocorrelations going to zero at an exponential rate.
Another question is a thorough analysis of the properties of parameter estimates
(weights) and tests for the order of integration. Finally we want to extend the uni-
variate results to the multivariate case with a special interest towards cointegrated
processes.
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Appendix: Mathematical Proofs

Proof of Lemma 1

It can easily be shown that {z:} is ¢-irreducible if the support of the probability density
function (PDF) of €. is the whole real line, i.e., the PDF is positive everywhere in R (Chan
& Tong, 1985). In this case every non-null p-dimensional hypercube is reached in p steps
with positive probability (and hence every non-null Borel set A).

A necessary and sufficient condition for {z:} to be aperiodic is that there exists a set A
and positive integer n such that p™(z, A) > 0 and p"*'(z,A) > 0 for all z € A (Tong,
1990, p. 455). In our case this is true for all n due to the unbounded additive noise.

Proof of Theorem 1

We use the following result from nonlinear time series theory:

Theorem 2 (Chan & Tong 1985) Let {x.} be defined by (1), (6) and let G be compact,
i.e. preserve compact sets. If G can be decomposed as G = Gp+Ga and G4(-) is of bounded
range, Gi(-) is continuous and homogeneous, i.e., Gp(az) = aGu(x), the origin is a fired
point of Gn and G is uniform asymptotically stable, [E|e;| < oo and the PDF of € is
positive everywhere in R, then {z:} is geometrically ergodic.

The noise process €. fulfills the conditions by assumption. Clearly all networks are con-
tinuous compact functions. Standard MLPs without shortcut connections and RBFs have
a bounded range, hence G, = 0 and G = Ggq, and the series {{:} is asymptotically sta-
tionary. If we allow for linear shortcut connections between the input and the outputs,
we get G = ¢’z and Ga = 70 + X, Bio(ai + alz) i.e., Gh is the linear shortcut part
of the network, and Gg is a standard MLP without shortcut connections. Clearly, G, is
continuous, homogeneous and has the origin as a fixed point. Hence, the series {&.} is
asymptotically stationary if G is asymptotically stable, i.e., when all characteristic roots
of Gp have a magnitude less than unity. Obviously the same is true for RBF's with shortcut
connections. Note that the model reduces to a standard linear AR(p) model if G4 = 0.
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