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Abstract 

Human and animal studies show that mammalian brain undergoes 
massive synaptic pruning during childhood , removing about half of 
the synapses until puberty. We have previously shown that main­
taining network memory performance while synapses are deleted, 
requires that synapses are properly modified and pruned, remov­
ing the weaker synapses. We now show that neuronal regulation , a 
mechanism recently observed to maintain the average neuronal in­
put field , results in weight-dependent synaptic modification . Under 
the correct range of the degradation dimension and synaptic up­
per bound, neuronal regulation removes the weaker synapses and 
judiciously modifies the remaining synapses . It implements near 
optimal synaptic modification, and maintains the memory perfor­
mance of a network undergoing massive synaptic pruning. Thus , 
this paper shows that in addition to the known effects of Hebbian 
changes, neuronal regulation may play an important role in the 
self-organization of brain networks during development . 

1 Introduction 

This paper studies one of the fundamental puzzles in brain development: the mas­
sive synaptic pruning observed in mammals during childhood , removing more than 
half of the synapses until puberty (see [1] for review) . This phenomenon is ob­
served in various areas of the brain both in animal studies and human studies. How 
can the brain function after such massive synaptic elimination? what could be the 
computational advantage of such a seemingly wasteful developmental strategy? In 
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previous work [2], we have shown that synaptic overgrowth followed by judicial 
pruning along development improves the performance of an associative memory 
network with limited synaptic resources, thus suggesting a new computational ex­
planation for synaptic pruning in childhood. The optimal pruning strategy was 
found to require that synapses are deleted according to their efficacy, removing the 
weaker synapses first. 

But is there a mechanism that can implement these theoretically-derived synaptic 
pruning strategies in a biologically plausible manner? To answer this question , we 
focus here on studying the role of neuronal regulation (NR) , a mechanism operating 
to maintain the homeostasis of the neuron 's membrane potential. NR has been re­
cently identified experimentally by [3], who showed that neurons both up-regulate 
and down-regulate the efficacy of their incoming excitatory synapses in a multi­
plicative manner, maintaining their membrane potential around a baseline level. 
Independently, [4] have studied NR theoretically, showing that it can efficiently 
maintain the memory performance of networks undergoing synaptic degradation . 
Both [3] and [4] have hypothesized that NR may lead to synaptic pruning during 
development. 

In this paper we show that this hypothesis is both computationally feasible and 
biologically plausible by studying the modification of synaptic values resulting from 
the operation of NR. Our work thus gives a possible account for the way brain 
networks maintain their performance while undergoing massive synaptic pruning. 

2 The Model 

NR-driven synaptic modification (NRSM) results from two concomitant processes: 
synaptic degradation (which is the inevitable consequence of synaptic turnover 
[5]) , and neuronal regulation (NR) operating to compensate for the degradation. 
We therefore model NRSM by a sequence of degradation-strengthening steps. At 
each time step, synaptic degradation stochastically reduces the synaptic strength 
W t (Wt > 0) to W't+l by 

W't+l = W t - (wtt'1]t; 1] "" N(J..{/ , (1"1/) (1) 

where 1] is noise term with positive mean and the power a defines the degradation 
dimension parameter chosen in the range [0,1] . Neuronal regulation is modeled by 
letting the post-synaptic neuron multiplicatively strengthen all its synapses by a 
common factor to restore its original input field 

W t+1 = W'tH li~ (2) 
Ii 

where If is the input field of neuron i at time t. The excitatory synaptic efficacies are 
assumed to have a viability lower bound B- below which a synapse degenerates and 
vanishes, and a soft upper bound B+ beyond which a synapse is strongly degraded 
reflecting their maximal efficacy. To study of the above process in a network, a 
model incorporating a segregation between inhibitory and excitatory neurons (i.e. 
obeying Dale's law) is required . To generate this essential segregation, we modify 
the standard low-activity associative memory model proposed by [6] by adding a 
small positive term to the synaptic learning rule. In this model, M memories 
are stored in an excitatory N -neuron network forming attractors of the network 
dynamics. The synaptic efficacy Wij between the jth (pre-synaptic) neuron and 
the ith (post-synaptic) neuron is 

M 

Wij = I: [(er - p)(ej - p) + a] , 1 ~ i i= j ~ N (3) 
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where {e'}~=l are {O, I} memory patterns with coding level p (fraction of firing 
neurons), and a is some positive constant 1. The updating rule for the state Xf of 
the ith neuron at time t is 

N N 

xI+1 = (J(Jf), If = ~ L9(Wij)Xj - ~ L xj - T, (J(J) = 1 + sign(J) (4) 
2 

j=l j=l 

where T is the neuronal threshold, and I is the inhibition strength. 9 is a general 
modification function over the excitatory synapses, which is either derived explicitly 
(See Section 4), or determined implicitly by the operation of NRSM. If 9 is linear 
and I = Mathe model reduces to the original model described by [6]. The overlap 
mil (or similarity) between the network 's activity pattern X and the memory ~II 
serves to measure memory performance (retrieval acuity), and is defined as mil = 
~ Ef=l (~j - p)Xj. 

3 N euronally Regulated Synaptic Modification 

NRSM was studied by simulating the degradation-strengthening sequence in a net­
work in which memory patterns were stored according to Eq.3. Figure la plots a 
typical distribution of synaptic values as traced along a sequence of degradation­
strengthening steps (Eq. 1,2) . As evident, the synaptic values diverge: some of the 
weights are strengthened and lie close to the upper synaptic bounds, while the other 
synapses degenerate and vanish. Using probabilistic considerations, it can be shown 
that the synaptic distribution converge to a meta-stable state where it remains for 
long waiting times. Figure Ib describes the metastable synaptic distribution as 
calculated for different 0 values . 

Evolving distribution of synaptic efficacies 
a. Simulation results b. Numerical results 

10000 1.0 
/1, 5000 

CJ) 
r I 

r r I 
Q) r 

\1000 I 

0.8 _._. Alpha=O.O 
CJ) I 

--- Alpha=O.5 c.. 
ctl - Alpha=O.9 
c:: r 

1400 I 
~.6 >-

CJ) '(j) - c:: 
0 ~0.4 I .... i Q) 
.0 i 
E .. 

0.2 // 

:::l / 
/ . 

c:: 
0.0 0 

Figure 1: Distribution of synaptic strengths following a degradation-strengthening 
process. a) Synaptic distribution after 0,200 , 400, 1000 and 5000 degradation­
strengthening steps of a 400 neurons network with 1000 stored memory patterns. 
0=0.8, p = 0.1, B- = 10- 5 , B+ = 18 and T/ '" N(0.05, 0.05). Qualitatively similar 
results were obtained for a wide range of simulation parameters. b) The synaptic 
distribution of the remaining synapses at the meta-stable state was calculated as 
the main eigen vector of the transition probability matrix. 

1 As the weights are normally distributed with expectation M a > 0 and standard devi­
ation O(VM) , the probability of a negative synapse vanishes as M goes to infinity (and 
is negligible already for several dozens of memories in the parameters' range used here). 
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a. NRSM functions at the 
Metastable state 
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b. NRSM and 
random deletion 
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Figure 2: a) NRSM functions at the metastable state for different a values. Re­
sults were obtained in a 400-neurons network after performing 5000 degradation­
strengthening steps. Parameter values are as in Figure 1, except B+ = 12. b) 
Performance of NR modification and random deletion. The retrieval acuity of 200 
memories stored in a network of 800 neurons is portrayed as a function of network 
connectivity, as the network undergoes continuous pruning until NR reaches the 
metastable state. a = 0, B+ = 7.5, p = 0.1, rna = 0.80, a = 0.01, T = 0.35, 
B- = 10- 5 and TJ"'" N(O.OI, 0.01). 

To further investigate which synapses are strengthened and which are pruned, we 
study the resulting synaptic modification function. Figure 2a plots the value of 
synaptic efficacy at the metastable state as a function of the initial synaptic effi­
cacy, for different values of the degradation dimension a. As observed, a sigmoidal 
dependency is obtained, where the slope of the sigmoid s.trongly depends on the 
degradatiori dimension. In the two limit cases, additive degradation (a = 0) results 
in a step function at the metastable state, while multiplicative degradation (a = 1) 
results in random diffusion of the synaptic weights toward a memory less mean value. 
Different values of a and B+ result in different levels of synaptic pruning: When 
the synaptic upper bound B+ is high, the surviving synapses assume high values, 
leading to massive pruning to maintain the neuronal input field, which in turn re­
duces network 's performance. Low B+ values lead to high connectivity, but limit 
synapses to a small set of possible values, again reducing memory performance. Our 
simulations show that optimal memory retrieval is obtained for B+ values that lead 
to deletion levels of 40% - 60%, in which NR indeed maintains the network perfor­
mance. Figure 2b traces the average retrieval acuity of a network throughout the 
operation of NR, versus a network subject to random deletion at the same pruning 
levels. While the retrieval of a randomly pruned network collapses already at low 
deletion levels of about 20%, a network undergoing NR performs well even in high 
deletion levels. 

4 Optimal Modification In Excitatory-Inhibitory Networks 

To obtain a a comparative yardstick to evaluate the efficiency of NR as a selective 
pruning mechanism, we derive optimal modification functions maximizing memory 
performance in our excitatory-inhibitory model and compare them to the NRSM 
functions. 
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We study general synaptic modification functions, which prune some of the synapses 
and possibly modify the rest, while satisfying global constraints on synapses such 
as the number or total strength of the synapses. These constraints reflect the 
observation that synaptic activity is strongly correlated with energy consumption 
in the brain [7], and synaptic resources may hence be inherently limited in the adult 
brain. 

We evaluate the impact of these functions on the network's retrieval performance, 
by deriving their effect on the signal to noise ratio (SIN) of the neuron's input field 
(Eqs. 3,4)' known to be the primary determinant of retrieval capacity ([8]). This 
analysis, conducted in a similar manner to [2] yields 

where z'" N(O, 1) and 9 is the modification function of Eq. 4 but is now explicitly 
applied to the synapses. To derive optimal synaptic modification functions with 
limited synaptic resources, we consider 9 functions that zero all synapses except 
those in some set A, and keep the integral 

i l(z)¢(z)dz k = 0, 1, ... ; g(z) = OVz ~ A (6) 

limited. We then maximize the SIN under this constraint using the Lagrange 
method. Our results show that without any synaptic constraints the optimal func­
tion is the identity function, that is, the original Hebbian rule is optimal. When 
the number of synapses is restricted (k = 0), the optimal modification function is a 
linear function for all the remaining synapses 

{
a -

g(W) = aW -J.ta+b where b 
L z2¢(z)dz 

J z¢(z )dz 
(Ta A 

(1-L ¢(z)dz) 

E(W) 
V(W) (7) 

for any deletion set A. To find the synapses that should be deleted, we have numer­
ically searched for a deletion set maximizing SIN while limiting g(W) to positive 
values (as required by the segregation between excitatory and inhibitory neurons). 
The results show, that weak synapses pruning, a modification strategy that re­
moves the weakest synapses and modifies the rest according to Eq. 7, is optimal 
at deletion levels above 50%. For lower deletion levels, the above 9 function fails 
to satisfy the positivity constraint for any set A. When the positivity constraint is 
ignored, SIN is maximized if the weights closest to the mean are deleted and the 
remaining synapses are modified according to Eq 7. We name this strategy mean 
synapses pruning. Figure 3 plots the memory capacity under weak-synapses 
pruning (compared with random deletion and mean-synaptic pruning) showing that 
pruning the weak synapses performs at least near optimally for lower deletion levels 
as well. Even more interesting, under the correct parameter values weak-synapses 
pruning results in a modification function that has a similar form to the NR-driven 
modification function studied in the previous Section: both strategies remove the 
weakest synapses and linearly modify the remaining synapses in a similar manner. 
In the case of limited overall synaptic strength (k > 0 in Eq. 6), the optimal 9 
satisfies 

z - 2"Y1 [g(z) - E(g(z))] - "Y2kg(z)k-1 = 0 (8) 
and thus for k = 1 and k = 2 the optimal modification function is again linear. For 
k > 2 a sublinear modification function is optimal, where 9 is a function of zl/(k-1), 
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Capacity of different synaptic modification functions g(w) 
a. Analysis results b. Simulations results 
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Figure 3: Comparison between performance of different modification strategies as a 
function of the deletion level (percentage of synapses pruned). Capacity is measured 
as the number of patterns that can be stored in the network (N = 2000) and be 
recalled almost correctly (rn > 0.95) from a degraded pattern (rna = 0.80). 

and is thus unbounded for all k. Therefore, in our model, bounds on the synaptic 
efficacies are not dictated by the optimization process. Their computational ad­
vantage arises from their effect on preserving memory capacity in face of ongoing 
synaptic pruning. 

5 Discussion 

By studying NR-driven synaptic modification in the framework of associative mem­
ory networks, we show that NR prunes the weaker synapses and modifies the re­
maining synapses in a sigmoidal manner. The critical variables that govern the 
pruning process are the degradation dimension and the upper synaptic bound. Our 
results show that in the correct range of these parameters, NR implements 
a near optimal strategy, maximizing memory capacity in the sparse con­
nectivity levels observed in the brain. 

A fundamental requirement of central nervous system development is that the sys­
tem should continuously function, while undergoing major structural and func­
tional developmental changes. It has been proposed that a major functional role 
of neuronal down-regulation during early infancy is to maintain neuronal activity 
at its baseline levels while facing continuous increase in the number and efficacy 
of synapses [3]. Focusing on up-regulation, our work shows that NR has another 
important interesting effect: that of modifying and pruning synapses in a continu­
ously optimal manner. Neuronally regulated synaptic modifications may play the 
same role also in the peripheral nervous system: It was recently shown that in the 
neuro-muscular junction the muscle regulates its incoming synapses in a way simi­
lar to NR [9]. Our analysis suggests this process may be the underlying cause for 
the finding that synapses in the neuro-muscular junction are either strengthened or 
pruned according to their initial efficacy [10]. 

The significance of our work goes beyond understanding synaptic organization and 
remodeling in the associative memory models studied in this paper. Our analysis 
bears relevance to two other fundamental paradigms: Hetero Associative memory 
and self organizing maps, sharing the same basic synaptic structure of storing as-
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sociations between sets of patterns via a Hebbian learning rule. 

Combining the investigation of a biologically identified mechanism with the ana­
lytic study of performance optimization in neural network models, this paper shows 
the biologically plausible and beneficial role of weight dependent synaptic pruning. 
Thus, in addition to the known effects of Hebbian learning, neuronal regulation may 
play an important role in the self-organization of brain networks during develop­
ment . 
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