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Abstract 

In robotics and other control applications it is commonplace to have a pre­
existing set of controllers for solving subtasks, perhaps hand-crafted or 
previously learned or planned, and still face a difficult problem of how to 
choose and switch among the controllers to solve an overall task as well as 
possible. In this paper we present a framework based on Markov decision 
processes and semi-Markov decision processes for phrasing this problem, 
a basic theorem regarding the improvement in performance that can be ob­
tained by switching flexibly between given controllers, and example appli­
cations of the theorem. In particular, we show how an agent can plan with 
these high-level controllers and then use the results of such planning to find 
an even better plan, by modifying the existing controllers, with negligible 
additional cost and no re-planning. In one of our examples, the complexity 
of the problem is reduced from 24 billion state-action pairs to less than a 
million state-controller pairs. 

In many applications, solutions to parts of a task are known, either because they were hand­
crafted by people or because they were previously learned or planned. For example, in 
robotics applications, there may exist controllers for moving joints to positions, picking up 
objects, controlling eye movements, or navigating along hallways. More generally, an intelli­
gent system may have available to it several temporally extended courses of action to choose 
from. In such cases, a key challenge is to take full advantage of the existing temporally ex­
tended actions, to choose or switch among them effectively, and to plan at their level rather 
than at the level of individual actions. 

Recently, several researchers have begun to address these challenges within the framework of 
reinforcement learning and Markov decision processes (e.g., Singh, 1992; Kaelbling, 1993; 
Dayan & Hinton, 1993; Thrun and Schwartz, 1995; Sutton, 1995; Dietterich, 1998; Parr & 
Russell, 1998; McGovern, Sutton & Fagg, 1997). Common to much of this recent work is 
the modeling of a temporally extended action as a policy (controller) and a condition for 
terminating, which we together refer to as an option (Sutton, Precup & Singh, 1998). In 
this paper we consider the problem of effectively combining given options into one overall 
policy, generalizing prior work by Kaelbling (1993). Sections 1-3 introduce the framework; 
our new results are in Sections 4 and 5. 
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1 Reinforcement Learning (MDP) Framework 

In a Markov decision process (MDP), an agent interacts with an environment at some dis­
crete, lowest-level time scale t = 0,1,2, ... On each time step, the agent perceives the state 
of the environment, St E S, and on that basis chooses a primitive action, at E A. In response 
to each action, at, the environment produces one step later a numerical reward, Tt+l' and 
a next state, StH. The one-step model of the environment consists of the one-step state­
transition probabilities and the one-step expected rewards, 

p~s' = Pr{sHl = s' I St = S,at = a} and T~ = E{TtH 1st = S,at = a}, 

for all s, s' E S and a E A. The agent's objective is to learn an optimal Markov policy, a 
mapping from states to probabilities of taking each available primitive action, 7r : S x A -+ 
[0, 1], that maximizes the expected discounted future reward from each state s: 

V 1T (s) = E{Tt+l +,Tt+2 + ... \ St = S,7r} = L 7r(s,a)[T~ +, LP~S,V1T(S')], 
aEA. s' 

where 7r(s, a) is the probability with which the policy 7r chooses action a E As in state s, and 
, E [0, 1] is a discount-rate parameter. V1T (s) is called the value of state S under policy 7r, and 
V1T is called the state-value Junction for7r. The optimal state-value function gives the value of 
a state under an optimal policy: V*(s) = max1T V1T(S) = maxaEA.[T~ +,2:s' P~SI V*(s')]. 
Given V*, an optimal policy is easily formed by choosing in each state S any action that 
achieves the maximum in this equation. A parallel set of value functions, denoted Q1T and Q*, 
and Bellman equations can be defined for state-action pairs, rather than for states. Planning 
in reinforcement learning refers to the use of models of the environment to compute value 
functions and thereby to optimize or improve policies. 

2 Options 

We use the term options for our generalization of primitive actions to include temporally 
extended courses of action. Let ht,T = St, at, Tt+l, St+l, at+l, . .. , TT, ST be the history 
sequence from time t :::; T to time T, and let n denote the set of all possible histories in 
the given MDP. Options consist of three components: an initiation set I ~ S, a policy 
7r : n x A -+ [0, 1], and a termination condition {3 : n -+ [0, 1]. An option 0 = (I, 7r, (3) 
can be taken in state S if and only if S E I. If 0 is taken in state St, the next action at 
is selected according to 7r(St, .). The environment then makes a transition to SHl, where 
o terminates with probability (3(ht ,t+d, or else continues, determining atH according to 
7r(ht,tH' .), and transitioning to state SH2, where 0 terminates with probability (3(ht ,t+2) 
etc. We call the general options defined above semi-Markov because 7r and {3 depend on the 
history sequence; in Markov options 7r and {3 depend only on the current state. Semi-Markov 
options allow "timeouts", i.e., termination after some period of time has elapsed, and other 
extensions which cannot be handled by Markov options. 

The initiation set and termination condition of an option together limit the states over which 
the option's policy must be defined. For example, a h~nd-crafted policy 7r for a mobile robot 
to dock with its battery charger might be defined only for states I in which the battery charger 
is within sight. The termination condition (3 would be defined to be 1 outside of I and when 
the robot is successfupy docked. 

We can now define policies over options. Let the set of options available in state S be denoted 
as; the set of all options is denoted a = USES aS. When initiated in a state St, the Markov 
policy over options p : S X 0-+ [0,1] selects an option 0 E aS! according to the probability 
distribution p(St, .). The option 0 is then taken in St, determining actions until it terminates 
in St+k. at which point a new option is selected, according to P(SHk' .), and so on. In this 
way a policy over options, p, determines a (non-stationary) policy over actions, or flat policy, 
7r = f(p). We define the value of a state S under a general flat policy 7r as the expected return 
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if the policy is started in s: 

V 1T (s) d~f E {rt+l + r'rt+2 + .. ·1 £(7r, s, t) }, 

where £(7r, s, t) denotes the event of 7r being initiated in s at time t. The value of a state 
under a general policy (i.e., a policy over options) J-L can then be defined as the value of 

the state under the corresponding flat policy: VtL(s) ~f Vf(tL) (s). An analogous definition 
can be used for the option-value function, QtL(s,o). For semi-Markov options it is useful 
to define QtL(h, 0) as the expected discounted future reward after having followed option 0 
through history h. 

3 SMDP Planning 

Options are closely related to the actions in a special kind of decision problem known as a 
semi-Markov decision process, or SMDP (Puterman, 1994; see also Singh, 1992; Bradtke & 
Duff, 1995; Mahadevan et. aI., 1997; Parr & Russell, 1998). In fact, any MDP with a fixed 
set of options is an SMDP. Accordingly, the theory of SMDPs provides an important basis for 
a theory of options. In this section, we review the standard SMDP framework for planning, 
which will provide the basis for our extension. 

Planning with options requires a model of their consequences. The form of this model is 
given by prior work with SMDPs. The reward part of the model of 0 for state s E S is the 
total reward received along the way: 

r~ = E{rt+l +,rt+2 + .. . +,k-lrt+k I £(o,s,t)}, 

where £(0, s, t) denotes the event of 0 being initiated in state s at time t. The state-prediction 
part of the model is 

00 

p~s' = LP(s', k)'l, E{-l&s'st+k 1£(0, s, t)}, 
k=l 

for all s' E S, where p(s', k) is the probability that the option terminates in s' after k steps. 
We call this kind of model a multi-time model because it describes the outcome of an option 
not at a single time but at potentially many different times, appropriately combined. 

Using multi-time models we can write Bellman equations for general policies and options. 
For any general Markov policy J-L, its value functions satisfy the equations: 

VtL(s) = L J-L(s, 0) [r~ + 2:P~s' VtL(S')] and QtL(s,o) = r~ + LP~s' VtL(s'). 
oEO. s' s' 

Let us denote a restricted set of options by 0 and the set of all policies selecting only from 
options in 0 by IJ( 0). Then the optimal value function given that we can select only from 0 
is Va(s) = maxoEO. [r~ + 2:s' P~s' Va(s')]. A corresponding optimal policy, denoted J-Lo' 
is any policy that achieves Va' i.e., for which VtLe, (s) = Va (s) in all states s E S. If Va and 
the models of the options are known, then J-Lo can be formed .by choosing in any proportion 
among the maximizing options in the equation above for Va' 

It is straightforward to extend MDP planning methods to SMDPs. For example, synchronous 
value iteration with options initializes an approximate value function %(s) arbitrarily and 
then updates it by : 

Vk+l(S) f- max[r~ + 2: p~s' Vk(s')], "Is E S. 
oEOs 

s'ES 

Note that this algorithm reduces to conventional value iteration in the special case in which 
o = A. Standard results from SMDP theory guarantee that such processes converge for 
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general semi-Markov options: limk-too Vk(s) = Vo(s) for all s E S, 0 E 0, and for all O. 
The policies found using temporally abstract options are approximate in the sense that they 
achieve only Vo' which is typically less than the maximum possible, V·. 

4 Interrupting Options 

We are now ready to present the main new insight and result of this paper. SMDP meth­
ods apply to options, but only when they are treated as opaque indivisible units. Once an 
option has been selected, such methods require that its policy be followed until the option 
terminates. More interesting and potentially more powerful methods are possible by looking 
inside options and by altering their internal structure (e.g. Sutton, Precup & Singh, 1998). 

In particular, suppose we have determined the option-value function QI' (s, 0) for some policy 
J-L and for all state-options pairs s,o that could be encountered while following J-L. This 
function tells us how well we do while following J-L committing irrevocably to each option, 
but it can also be used to re-evaluate our commitment on each step. Suppose at time t we 
are in the midst of executing option o. If 0 is Markov in s, then we can compare the value 
of continuing with 0, which is QI' (St, 0), to the value of interrupting 0 and selecting a new 
option according to J-L, which is VI'(s) = Lo' J-L(s, o')QI'(s, 0'). If the latter is more highly 
valued, then why not interrupt 0 and allow the switch? This new way of behaving is indeed 
better, as shown below. 

We can characterize the new way of behaving as following a policy J-L' that is the same as the 
original one, but over new options, i.e. J-L' (s, 0') = J-L( s, 0), for all s E S. Each new option 
0' is the same as the corresponding old option 0 except that it terminates whenever switching 
seems better than continuing according to QI'. We call such a J-L' an interrupted policy of J-L. 
We will now state a general theorem, which extends the case described above, in that options 
may be semi-Markov (instead of Markov) and interruption is optional at each state where it 
could be done. The latter extension lifts the requirement that QI' be completely known, since 
the interruption can be restricted to states for which this information is available. 

Theorem 1 (Interruption) For any MDP, any set of options 0, and any Markov policy 
J-L : S x 0 -+ [0,1], define a new set of options, 0', with a one-to-one mapping between 
the two option sets as follows: for every 0 = (I, 7r, (3) E 0 we define a corresponding 
0' = (I, 7r, (3') EO', where{3' = (3exceptthatforanyhistoryhinwhichQI'(h,o) < VI'(s), 
where s is the final state of h, we may choose to set (3' (h) = 1. Any histories whose termina­
tion conditions are changed in this way are called interrupted histories. Let J-L' be the policy 
over 0' corresponding to J-L.' J-L'(s, 0') = J-L(s, 0), where 0 is the option in 0 corresponding to 
o',for all s E S. Then 

1. VI" (s) ~ VI'(s) for all s E S. 
2. Iffrom state s E S there is a non-zero probability of encountering an interrupted 

history upon initiating J-L' in s, then VI" (s) > VI'(s). 

Proof: The idea is to show that, for an arbitrary start state s, executing the option given by 
the termination improved policy J-L' and then following policy J-L thereafter is no worse than 
always following policy J-L. In other words, we show that the following inequality holds: 

LJ-L'(s,o')[r~' + LP~~'VI'(s')] ~ VI'(s) = LJ-L(s,o)[r~ + LP~8'VI'(S')]. (1) 
0' s' o s' 

If this is true, then we can use it to expand the left-hand side, repeatedly replacing every 
occurrence of VI'(x) on the left by the corresponding Lo' J-L' (x, o')[r~' + Lx' p~'x' VI' (x')]. 
In the limit, the left-hand side becomes VI", proving that VI" ~ VI'. Since J-L'(s, 0') = 
J-L(s,o) \Is E S, we need to show that 

(2) 
s' s' 
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Let r denote the set of all interrupted histories: r = {h En: f3 (h) =f f3' (h)}. Then, the left 
hand side of (2) can be re-written as 

E {r + ,kVJL(s') I £(0', s), hSSI ~ r} + E {r + ,kVJL(s') I £(0', s), hSSI E r}, 
where s', r, and k are the next state, cumulative reward, and number of elapsed steps fol­
lowing option 0 from s (hSSI is the history from s to s'). Trajectories that end because of 
encountering a history hSSI ~ r never encounter a history in r, and therefore also occur 
with the same probability and expected reward upon executing option 0 in state s. There-

for~, we can re-write the right hand side of (2) as E {r + ,kVJL(S') I £(0', s), hSSI ~ r} + 

E {f3(s')[r + ,kVJL(S')] + (1 - f3(s'))[r + ,kQJL(hsSI, 0)]1 £(0', s), hSsl E r}. 
This proves (1) because for all hSSI E r, Q6(hsSI, 0) :S VJL(s'). Note that strict inequality 
holds in (2) if Q6(hsSI, 0) < VJL(s') for at least one history hSSI E r that ends a trajectory 
generated by 0' with non-zero probability.) <> 

As one application of this result, consider the case in which /-L is an optimal policy for a given 
set of Markov options O. The interruption theorem gives us a way of improving over /-La 
with just the cost of checking (on each time step) if a better option exists, which is negligible 
compared to the combinatorial process of computing Q'O or Va' Kaelbling (1993) and Di­
etterich (1998) demonstrated a similar performance improvement by interrupting temporally 
extended actions in a different setting. 

5 Illustration 

Figure 1 shows a simple example of the gain that can be obtained by interrupting options. 
The task is to navigate from a start location to a goal location within a continuous two­
dimensional state space. The actions are movements of length 0.01 in any direction from the 
current state. Rather than work with these low-level actions, infinite in number, we introduce 
seven landmark locations in the space. For each landmark we define a controller that takes us 
to the landmark in a direct path. Each controller is only applicable within a limited range of 
states, in this case within a certain distance of the corresponding landmark. Each controller 
then defines an option: the circular region around the controller'S landmark is the option's 
initiation set, the controller itself is the policy, and the arrival at the target landmark is the 
termination condition. We denote the set of seven landmark options by O. Any action within 
0.01 of the goal location transitions to the terminal state, , = 1, and the reward is -Ion all 
transitions, which makes this a minimum-time task. 

One of the landmarks coincides with the goal, so it is possible to reach the goal while picking 
only from O. The optimal policy within II(O) runs from landmark to landmark, as shown 
by the thin line in Figure 1. This is the optimal solution to the SMDP defined by 0 and is 
indeed the best that one can do while picking only from these options. But of course one can 
do better if the options are not followed all the way to each landmark. The trajectory shown 
by the thick line in Figure 1 cuts the corners and is shorter. This is the interrupted policy 
with respect to the SMDP-optimal policy. The interrupted policy takes 474 steps from start 
to goal which, while not as good as the optimal policy (425 steps), is much better than the 
SMDP-optimal policy, which takes 600 steps. The state-value functions, VJLe, and VJL ' for 
the two policies are also shown in Figure 1. 

Figure 2 presents a more complex, mission planning task. A mission is a flight from base to 
observe as many of a given set of sites as possible and to return to base without running out 
of fuel. The local weather at each site flips from cloudy to clear according to independent 

lWe note that the same proof would also apply for switching to other options (not selected by /1-) if 
they improved over continuing with o. That result would be more general and closer to conventional 
policy improvement. We prefer the result given here because it emphasizes its primary application. 
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Figure 1: Using interruption to improve navigation with landmark-directed controllers. The task (left) 
is to navigate from S to G in minimum time using options based on controllers that run each to one 
of seven landmarks (the black dots). The circles show the region around each landmark within which 
the controllers operate. The thin line shows the optimal behavior that uses only these controllers run to 
termination, and the thick line shows the corresponding interrupted behavior, which cuts the corners. 
The right panels show the state-value functions for the SMDP-optimal and interrupted policies. 

Poisson processes. If the sky at a given site is cloudy when the plane gets there, no observa­
tion is made and the reward is a. If the sky is clear, the plane gets a reward, according to the 
importance of the site. The positions, rewards, and mean time between two weather changes 
for each site are given in Figure 2. The plane has a limited amount of fuel, and it consumes 
one unit of fuel during each time tick. If the fuel runs out before reaching the base, the plane 
crashes and receives a reward of -lOa. 

The primitive actions are tiny movements in any direction (there is no inertia). The state of 
the system is described by several variables : the current position of the plane, the fuel level, 
the sites that have been observed so far, and the current weather at each of the remaining sites. 
The state-action space has approximately 24.3 billion elements (assuming 100 discretization 
levels of the continuous variables) and is intractable by normal dynamic programming meth­
ods. We introduced options that can take the plane to each of the sites (including the base), 
from any position in the state space. The resulting SMDP has only 874,800 elements and it 
is feasible to exactly determine Vo (S') for all sites S'. From this solution and the model of 
the options, we can determine Qo(s , 0) = r~ + LSi P~SI VO(S') for any option 0 and any 
state s in the whole space. 

We performed asynchronous value iteration using the options in order to compute the optimal 
option-value function , and then used the interruption approach based on the values computed, 
The policies obtained by both approaches were compared to the results of a static planner, 
which exhaustively searches for the best tour assuming the weather does not change, and 
then re-plans whenever the weather does change. The graph in Figure 2 shows the reward 
obtained by each of these methods, averaged over 100 independent simulated missions. The 
policy obtained by interruption performs significantly better than the SMDP policy, which in 
turn is significantly better than the static planner.2 

6 Closing 

This paper has developed a natural , even obvious, observation-that one can do better by 
continually re-evaluating one 's commitment to courses of action than one can by commit­
ting irrevocably to them. Our contribution has been to formulate this observation precisely 
enough to prove it and to demonstrate it empirically. Our final example suggests that this 
technique can be used in applications far too large to be solved at the level of primitive ac­
tions. Note that this was achieved using exact methods, without function approximators to 
represent the value function . With function approximators and other reinforcement learning 
techniques, it should be possible to address problems that are substantially larger stilL 

2In preliminary experiments, we also used interruption on a crudely learned estimate of Qo. The 
performance of the interrupted solution was very close to the result reported here. 
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Figure 2: The mission planning task and the perfonnance of policies constructed by SMDP meth­
ods, interruption of the SMDP policy, and an optimal static re-planner that does not take into account 
possible changes in weather conditions. 
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