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Abstract 

Despite the fact that mental arithmetic is based on only a few hun­
dred basic facts and some simple algorithms, humans have a diffi­
cult time mastering the subject, and even experienced individuals 
make mistakes. Associative multiplication, the process of doing 
multiplication by memory without the use of rules or algorithms, 
is especially problematic. Humans exhibit certain characteristic 
phenomena in performing associative multiplications, both in the 
type of error and in the error frequency. We propose a model for 
the process of associative multiplication, and compare its perfor­
mance in both these phenomena with data from normal humans 
and from the model proposed by Anderson et al (1994). 

1 INTRODUCTION 

Associative mUltiplication is defined as multiplication done without recourse to 
computational algorithms, and as such is mainly concerned with recalling the basic 
times table. Learning up to the ten times table requires learning at most 121 
facts; in fact, if we assume that normal humans use only four simple rules, the 
number of facts to be learned reduces to 39. In theory, associative multiplication is 
therefore a simple problem. In reality, school children find it difficult to learn, and 
even trained adults have a relatively high rate of error, especially in comparison 
to performance on associative addition, which is superficially a similar problem. 
There has been surprisingly little work done on the methods by which humans 
perform basic multiplication problems; an excellent review of the current literature 
is provided by McCloskey et al (1991). 

If a model is to be considered plausible, it must have error characteristics similar to 
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those of humans at the same task. In arithmetic, this entails accounting for, at a 
minimum, two phenomena. The first is the problem size effect, as noted in various 
studies (e.g. Stazyk et ai, 1982), where response times and error rates increase for 
problems with larger operands. Secondly, humans have a characteristic distribution 
in the types of errors made. Specifically, errors can be classified as one of the 
following five types, as suggested by Campbell and Graham (1985), Siegler (1988), 
McCloskey et al (1991), and Girelli et al (1996): operand, where the given answer is 
correct with one of the operands replaced (e.g. 4 x 7 = 21; this category accounts 
for 66.4% of all errors made by normal adults); close-miss, where the result is within 
ten percent of the correct response (4 x 7 = 29; 20.0%); table, where the result is 
correct for a problem with both operands replaced (4 x 7 = 25; 3.9%); non-table, 
where the result is not on the times table (4 x 7 = 17; 6.7%); or operation, where 
the answer would have been correct for a different arithmetic operation, such as 
addition (4 x 7 = 11; 3.0%)1. 

It is reasonable to assume that humans use at least two distinct representations 
when dealing with numbers. The work by Mandler and Shebo (1982) on modeling 
the performance of various species (including humans, monkeys, and pigeons) on 
numerosity judgment tasks suggests that in such cases a coarse coding is used. On 
the other hand, humans are capable of dealing with numbers as abstract symbolic 
concepts, suggesting the use of a precise localist coding. Previous work has either 
used only one of these coding ideas (for example, Sokol et ai, 1991) or a single 
representation which combined aspects of both (Anderson et ai, 1994). 

Warrington (1982) documented DRC, a patient who suffered dyscalculia following 
a stroke. DRC retained normal intelligence and a grasp of numerical and arithmetic 
concepts. When presented with an arithmetic problem, DRC was capable of rapidly 
providing an approximate answer. However, when pressed for a precise answer, he 
was incapable of doing so without resorting to an explicit computational algorithm 
such as counting. One possible interpretation of this case study is that D RC retained 
the ability to work with numbers in a magnitude-related fashion, but had lost the 
ability to treat numbers as symbolic concepts. This suggests the hypothesis that 
humans may use two separate, concurrent representations for numbers: both a 
coarse coding and a more symbolic, precise coding in the course of doing associative 
arithmetic in general, and multiplication in particular, and switch between the 
codings at various points in the process. This hypothesis will form the basis of our 
modeling work. To guide the placement of these transitions between representations, 
we assume the further constraint that the coarse coding is the preferred coding (as 
it is conserved across a wide variety of species) and will tend to be expressed before 
the precise coding. 
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Figure 1: The coarse coding for digits. Numbers along the left are the digit; numbers 
along the bottom are position numbers. Blank regions in the grid represent zero 
activity. 

IData taken from Girelli et al (1996). 



A Model for Associative Multiplication 19 

2 METHODOLOGY 

Following the work of Mandler and Shebo (1982), our coarse coding consists of a 
54-dimensional vector, with a sliding "bump" of ones corresponding to the magni­
tude of the digit represented. The size of the bump decreases and the degree of 
overlap increases as the magnitude of the digit increases (Figure 1). Noise in this 
representation is simulated by the probability that a given bit will be in the wrong 
state. The precise representation, intended for symbolic manipulation of numbers, 
consists of a 10-dimensional vector with the value of the coded digit given by the 
dimension of greatest activity. Both of these representations are digit-based: each 
vector codes only for a number between 0 and 9, with concatenations of vectors 
used for numbers greater than 9. 
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Figure 2: Schematic of the network architecture. (A) The coarse coding. (B) The 
winner-take-all network. (C) The precise coding. (D) The feed-forward look-up 
table. See text for details. 
The model is trained in three distinct phases. A simple one-layer perceptron 
trained by a winner-take-all competitive learning algorithm is used to map the 
input operands from the original coarse coding into the precise representation. 
The network was trained for 10 epochs, each with a different set of 5 samples 
of noisy coarse-coded digits. At the end of training, the winner-take-all network 
performed at near-perfect levels. The translated operands are then presented to a 
two-layer feed-forward network with a logistic activation function trained by back­
propagation. The number of hidden units was equal to the number of problems in 
the training set (in this case, 32) to force look-up table behaviour. The look-up 
table was trained independently for varying numbers of iterations, using a learn­
ing rate constant of 0.01. The output of the look-up table is coarse coded as in 
Figure 1. In the final phase, the table output is translated by the winner-take-all 
network to provide the final answer in the precise coding. A schematic of the net­
work architecture is given in Figure 2. The operand vectors used for training of 
both networks had a noise parameter of 5%, while the vectors used in the analysis 
had 7.5% noise. Both the training and the testing problem set consisted of ten 
copies of each of the problems listed in Table 2, which are the problems used in 
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Anderson et al (1994). Simulations were done in MATLAB v5.1 (Mathworks, Inc., 
24 Prime Park Way, Natick MA, 01760-1500). 

3 RESULTS 
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Figure 3: Error distributions for human data (Girelli et al 1996), the model of 
Anderson et al (1994), and our model. 

Once a model has been trained, its errors on the training data can be categorized 
according to the error types listed in the Introduction section; a summary of the 
performance of our model is presented in Table 1. For comparison, we plot data 
generated by our model, the model of Anderson et al (1994), and human data from 
Girelli et al (1996) in Figure 3. In no case did the model generate an operation error. 
This is to be expected, as the model was only trained on multiplication, it should 
permit no way in which to make an operation error, other than by coincidence. A 
full set of results obtained from the model with 400 training iterations is presented 
in Table 22. 

Table 1: Error rates generated by our model. A column for operation errors is not 
included, as in no instance did our model generate an operation error. 

Iterations Errors in Operand Close-miss Table Non-table 
320 trials (%) (%) (%) (%) 

200 114 61.4 21.0 8.8 8.8 
400 85 65.9 20.0 7.1 7.1 
600 65 63.7 16.9 9.2 10.8 

2 As in Anderson et al (1994) , we have set 8 x 9 = 67 deliberately so that it is not the 
only problem with an answer greater than 70. 
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Table 2: Results from ten trials run with the model after 400 training iterations. 
Errors are marked in boldface. 

I Problem II 1 I 2 I 3 I 4 I 5Trta~ I 7 I 8 I 9 I 10 I 
2x2 4 4 4 4 4 4 4 4 4 4 
2x4 8 8 8 8 8 8 8 8 8 8 
2 x 5 10 10 10 10 10 10 10 10 10 10 
3x7 21 21 21 21 21 21 21 21 21 21 
3 x 8 24 24 24 64 24 24 21 24 24 21 
3 x 9 27 27 27 27 27 27 21 27 27 27 
4 x 2 8 8 8 8 8 8 8 10 8 8 
4x5 20 20 20 20 30 20 20 20 20 20 
4x6 24 24 24 20 20 24 24 20 24 35 
4x8 32 32 32 32 22 32 32 32 32 32 
4x9 36 36 36 36 21 36 36 30 36 36 
5 x 2 10 10 30 10 10 10 10 10 10 10 
5 x 7 30 42 30 35 35 35 30 30 35 35 
5 x 8 30 30 30 35 30 34 30 30 40 34 
6 x 3 24 18 18 24 28 12 18 18 24 24 
6x4 24 24 24 18 24 24 24 24 18 18 
6x5 30 30 30 30 30 30 30 30 30 30 
6 x 6 36 42 36 36 36 36 36 36 36 36 
6 x 7 42 32 49 42 42 42 42 42 42 42 
6x8 64 49 42 49 44 44 64 48 40 44 
7 x 3 24 21 21 21 21 21 21 21 21 24 
7x4 22 28 28 28 28 28 28 28 28 32 
7 x 5 35 35 35 35 35 30 35 35 35 35 
7x6 42 42 42 42 42 42 42 42 49 42 
7x7 29 49 49 49 49 52 49 42 49 42 
7x8 64 64 56 64 56 64 56 56 64 56 
8x3 24 24 21 24 34 24 24 24 24 24 
8x4 32 32 32 32 32 32 64 32 32 32 
8 x 6 44 49 49 44 44 46 42 49 44 56 
8 x 7 56 52 56 49 62 46 64 64 49 56 
8 x 8 64 64 64 64 54 64 64 64 64 64 
8 x 9 67 67 67 67 67 67 67 67 67 67 

The convention in the current arithmetic literature is to test for the existence of a 
problem-size effect by fitting a line to the errors made versus the sum of operands 
in the problem. Positive slopes to such fits would demonstrate the existence of a 
problem size effect. The results of this analysis are shown in Figure 4. The model 
had a problem size effect in all instances. Note that no claims are made of the 
appropriateness of a linear model for the given data, nor should any conclusions be 
drawn from the specific parameters of the fit, especially given the sparsity of the 
data. The sole point of this analysis is to highlight a generally increasing trend. 

4 DISCUSSION 

As noted in the Results section above, our model demonstrates the problem-size 
effect in number of errors made (see Figure 4), though the chosen architecture does 
not permit a response time effect. The presence of this effect is hardly surprising, 
as all models which use a representation similar to our coarse coding (Mandler & 
Shebo, 1982; Anderson et al, 1994) display a problem-size effect. 
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Figure 4: Demonstration of the problem size effect. The data plotted here is for 
the model trained for 400 iterations, as it proved the best fit to the distribution of 
errors in humans (Figure 3); a similar analysis gives a best-fit slope of 1.9 for 200 
training iterations and 1.1 for 600 training iterations. 

It has been suggested by a few researchers (e .g. Campbell & Graham, 1985) that 
the problem-size effect is simply a frequency effect, as humans encounter problems 
involving smaller operands more often in real life. While there is some evidence to 
the contrary (Hamman and Ashcraft , 1986) , it remains a possibility. 

It is immediately apparent from Figure 3 that our model has much the same distri­
bution of errors as seen in normal humans, and is superior to the model of Anderson 
et al (1994) in this regard. That model, implemented as an auto-associative network 
using a Brain State in a Box (BSB) architecture (Anderson et al, 1994; Anderson 
1995) generates too many operand errors , and no table, non-table or operation 
errors. These deficiencies can be predicted from the attractor nature of an auto­
associative network. It is the process of translating between representations for 
digits, and the possibility for error in doing so, which we believe allows our model 
to produce its various categories of errors . 

An interesting aspect of our model is revealed by Figure 3 and Table 1. While in­
creased training of the look-up table improves the overall performance of the model, 
the error distribution remains relatively constant across the length of training stud­
ied. This suggests that in this model, the error distribution is an inherent feature 
of the architecture, and not a training artifact. This corresponds with data from 
normal humans , in which the error distribution remains relatively constant across 
individuals (Girelli et al, 1996). As noted above, the design of our model should 
permit the occurrence of all the various error types, save for operation errors. How­
ever, at this point, we do not have a clear understanding of the exact architectural 
features that generate the error distribution itself. 

Defining a model for associative multiplication is only a single step towards the goal 
of understanding how humans perform general arithmetic. Rumelhart et al (1986) 
proposed a mechanism for multi-digit arithmetic operations given a mechanism for 
single-digit operations , which addresses part of the issue; this model has been im­
plemented for addition by Cottrell and T 'sung (1991). The fact that humans make 
operation errors suggests that there might be interactions between the mechanisms 
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of associative multiplication and associative addition; conversely, errors on these 
tasks may occur on different processing levels entirely. 

In summary, this model , despite several outstanding questions, shows great potential 
as a description of the associative multiplication process. Eventually, we expect it 
to form the basis for a more complete model of arithmetic in human cognition. 
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