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Abstract 

The kernel-parameter is one of the few tunable parameters in Sup­
port Vector machines, controlling the complexity of the resulting 
hypothesis. Its choice amounts to model selection and its value is 
usually found by means of a validation set. We present an algo­
rithm which can automatically perform model selection with little 
additional computational cost and with no need of a validation set . 
In this procedure model selection and learning are not separate, 
but kernels are dynamically adjusted during the learning process 
to find the kernel parameter which provides the best possible upper 
bound on the generalisation error. Theoretical results motivating 
the approach and experimental results confirming its validity are 
presented. 

1 Introduction 

Support Vector Machines (SVMs) are learning systems designed to automatically 
trade-off accuracy and complexity by minimizing an upper bound on the general­
isation error provided by VC theory. In practice, however, SVMs still have a few 
tunable parameters which need to be determined in order to achieve the right bal­
ance and the values of these are usually found by means of a validation set. One 
of the most important of these is the kernel-parameter which implicitly defines the 
structure of the high dimensional feature space where the maximal margin hyper­
plane is found. Too rich a feature space would cause the system to overfit the data, 
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and conversely the system can be unable to separate the data if the kernels are too 
poor. Capacity control can therefore be performed by tuning the kernel parameter 
subject to the margin being maximized. For noisy datasets, yet another quantity 
needs to be set, namely the soft-margin parameter C. 

SVMs therefore display a remarkable dimensionality reduction for model selection. 
Systems such as neural networks need many different architectures to be tested and 
decision trees are faced with a similar problem during the pruning phase. On the 
other hand SVMs can shift from one model complexity to another by simply tuning 
a continuous parameter. 

Generally, model selection by SVMs is still performed in the standard way: by 
learning different SVMs and testing them on a validation set in order to determine 
the optimal value of the kernel-parameter. This is expensive in terms of computing 
time and training data. In this paper we propose a different scheme which dy­
namically adjusts the kernel-parameter to explore the space of possible models at 
little additional computational cost compared to fixed-kernel learning. Futhermore 
this approach only makes use of training-set information so it is more efficient in a 
sample complexity sense. 

Before proposing the model selection procedure we first prove a theoretical result, 
namely that the margin and structural risk minimization (SRM) bound on the gen­
eralization error depend smoothly on the kernel parameter. This can be exploited 
by an algorithm which keeps the system close to maximal margin while the kernel 
parameter is changed smoothly. During this phase, the theoretical bound given by 
SRM theory can be computed. The best kernel-parameter is the one which gives the 
lowest possible bound. In section 4 we present experimental results showing that 
model selection can be efficiently performed using the proposed method (though we 
only consider Gaussian kernels in the simulations outlined). 

2 Support Vector Learning 

The decision function implemented by SV machines can be written as: 

f(x) = sign (L Yiai K(x, Xi) - B) 
tESV 

where the ai are obtained by maximising the following Lagrangian (where m is the 
number of patterns): 

m m 

L = L ai - 1/2 L aiajYiyjK(Xi, Xj) 
i= l i,j= l 

with respect to the ai, subject to the constraints 

m 

LaiYi = a 
i=l 

and where the functions K(x, x') are called kernels. The kernels provide an expres­
sion for dot-products in a high-dimensional feature space [1]: 

K( x, x') = (<I> (x) , <I>(x' )) 



206 N. Cristianini, C. Campbell and 1. Shawe-Taylor 

and also implicitly define the nonlinear mapping <1>( x) of the training data into 
feature space where they may be separated using the maximal margin hyperplane. 
A number of choices of kernel-function can be made e.g. Gaussians kernels: 

K(x, x') = e-ll x-x'1 12/2(T2 

The following upper bound can be proven from VC theory for the generalisation 
error using hyperplanes in feature space [7, 9J: 

where R is the radius of the smallest ball containing the training set, m the number 
of training points and 'Y the margin (d. [2J for a complete survey of the generaliza­
tion properties of SV machines) . 

The Lagrange multipliers Qi are usually found by means of a Quadratic Program­
ming optimization routine, while the kernel-parameters are found using a validation 
set. As illustrated in Figure 1 there is a minimum of the generalisation error for 
that value of the kernel-parameter which has the best trade-off between overfitting 
and ability to find an efficient solution. 
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Figure 1: Generalization error (y-axis) as a function of (J (x-axis) for the mirror sym­
metry problem (for Gaussian kernels with zero training error and maximal margin, 
m = 200, n = 30 and averaged over 105 examples). 

3 A utomatic Model Order Selection 

We now prove a theorem which shows that the margin of the optimal hyperplane is a 
smooth function of the kernel parameter, as is the upper bound on the generalisation 
error. First we state the Implicit Function Theorem. 

Implicit Function Theorem [10]: Let F(x, y) be a continuously differentiable 
function, 

F : U ~ ~ x V ~ ~p --t ~ 

and let (a, b) E U x V be a solution to the equation F(x, y) = O. Let the partial 
derivatives matrix mi,j = (~:;) w.r.t. y be full rank at (a, b) . Then, near (a, b), 
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there exists one and only one function y = g(x) such that F(x,g(x)) = 0, and such 
function is continuous. 

Theorem: The margin, of SV machines depends smoothly on the kernel parameter 
a. 

Proof: Consider the function 9 : ~ <;;; ~ --t A <;;; ~P, 9 : a ~ (aO, A) which given the 
data maps the choice of a to the optimal parameters aO and lagrange parameter A 
of the SV machine with Kernel matrix Gij = YiYjK(a; Xi, Xj )). Let 

p 

Wu(a) = l:ai - 1/2 l:aiajYiyjK(a; Xi,Xj) + A(l: Yiai ) 
i=l i,j 

be the functional that the SV machine maximizes. Fix a value of a and let aO(a) be 
the corresponding solution of Wu(a). Let I be the set of indices for which aj((J) =1= O. 
We may assume that the submatrix of G indexed by I is non-singular since otherwise 
the maximal margin hyperplane could be expressed in terms of a subset of indices. 
Now choose a maximal set of indices J containing I such that the corresponding 
su bmatrix of G is non-singular and all of the points indexed by J have margin 1. 
Now consider the function F((J ,a , A)i = (a~)j; ,i 2: 1, F((J,a,A)o = LjYjaj in 
the neighbourhood of (J, where ji is an enumeration of the elements of J, 

oWu "'_ oa. = 1 - Yj L.. aiYiK((J; Xi, Xj) + AYj 
J . 

t 

and satisfies the equation F((J, aO((J), A(a)) = 0 at the extremal points of Wu(a) . 
Then the SV function is the implicit function, (aO, A) = g((J), and is continuous 
(and unique) iff F is continuously differentiable and the partial derivatives matrix 
w.r.t. a, A is full rank. But the partial derivatives matrix H is given by 

OP 
Hij = oat = Yj;Yj}K((J;xj; ,Xj}) = Hji,i , j 2: 1, 

JJ 

for ji,iJ E J, which was non-degenerate by definition of J, while 

oFo oFo oFj . 
Hoo = OA = 0 and HOj = oajJ = n = OA = Hjo,J 2: 1. 

Consider any non-zero a satisfying Lj ajYJ = 0, and any A. We have 

(a, Af H(a, A) = aTGa + 2AaT Y = aTGa > O. 

Hence, the matrix H is non-singular for a satisfying the given linear constraint. 
Hence, by the implicit function theorem 9 is a continuous function of (J. The 
following is proven in [2J: 

,2 = (t Zif) -1 
t=l 

which shows that, is a continuous function of (J. As the radius of the ball containing 
the points is also a continuous function of (J , and the generalization error bound has 
the form f. ~ CR(a)2llaO((J)lll for some constant C, we have the following corollary. 

Corollary: The bound on the generalization error is smooth in (J. 

This means that, when the margin is optimal, small variations in the kernel pa­
rameter will produce small variations in the margin (and in the bound on the 
generalisation error). Thus ,u ~ ,uHu and after updating the (J, the system will 
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still be in a sub-optimal position. This suggests the following strategy for Gaussian 
kernels, for instance: 

Kernel Selection Procedure 

l. Initialize u to a very small value 

2. Maximize the margin, then 

• Compute the SRM bound (or observe the validation error) 
• Increase the kernel parameter: u +- u + 8u 

3. Stop when a predetermined value of u is reached else repeat step 2. 

This procedure takes advantage of the fact that for very small (J convergence is 
generally very rapid (overfi tting the data, of course), and that once the system is 
near the equilibrium, few iterations will always be sufficient to move it back to the 
maximal margin situation. In other words, this system is brought to a maximal 
margin state in the beginning, when this is computationally very cheap, and then it 
is actively kept in that situation by continuously adjusting the a while the kernel­
parameter is gradually increased. 

In the next section we will experimentally investigate this procedure for real-life 
datasets. In the numerical simulations we have used the Kernel-Adatron (KA) 
algorithm recently developed by two of the authors [4] which can be used to train SV 
machines. We have chosen this algorithm because it can be regarded as a gradient 
ascent procedure for maximising the Kuhn-Tucker Lagrangian L . Thus the ai for 
a sub-optimal state are close to those for the optimum and so little computational 
effort will be needed to bring the system back to a maximal margin position: 

The Kernel-Adatron Algorithm. 

l. exi = l. 

2. FOR i = 1 TO m 

· ,i = YiZi 

• 8exi = 17(1 _ , i ) 

• IF (ex i + 8exi ) ::; 0 THEN ex i = 0 ELSE exi +- ex i + 8ext . 

• margin = ~ (min(z;) -max(z;)) 
(4 (z;) = positively (negatively) labelled patterns) 

3. IF(margin = 1) THEN stop, ELSE go to step 2. 

4 Experimental Results 

In this section we implement the above algorithm for real-life datasets and plot the 
upper bound given by VC theory and the generalization error as functions of (J. In 
order to compute the bound, E ::; R2/m,2 we need to estimate the radius of the ball 
in feature space. In general his can be done explicitly by maximising the following 
Lagrangian w.r.t. Ai using convex quadratic programming routines: 

L = L AiK(Xi, Xi) - L AiAjK(Xi, Xj) 

i,j 

subject to the constraints 2:i Ai = 1 and Ai 2: O. The radius is then found from [3]: 
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i,j i,j 

However, we can also get an upper bound for this quantity by noting that Gaussian 
kernels always map training points to the surface of a sphere of radius 1 centered on 
the origin of the feature space. This can be easily seen by noting that the distance 
of a point from the origin is its norm: 

11<I>(x)11 = J(<I>(X),<I>(X)) = JK(x,x) = Jellx-xll/2o-2 = 1 

In Figure 2 we give both these bounds (the upper bound is Li adm) and general­
isation error (on a test set) for two standard datasets: the aspect-angle dependent 
sonar classification dataset of Gorman and Sejnowski [5] and the Wisconsin breast 
cancer dataset [8]. As we see from these plots there is little need for the addi­
tional computational cost of determining R from the above quadratic progamming 
problem, at least for Gaussian kernels. In Fig. 3 we plot the bound Li adm and 
generalisation error for 2 figures from a United States Postal Service dataset of 
handwritten digits [6]. In these, and other instances we have investigated, the mini­
mum of the bound approximately coincides with the minimum of the generalisation 
error. This gives a good criterion for the most suitable choice for a. Furthermore, 
this estimate for the best a is derived solely from training data without the need 
for an additional validation set . 

02 . , .. 
Figure 2: Generalisation error (solid curves) for the sonar classification (left Fig.) 
and Wisconsin breast cancer datasets (right Fig.). The upper curves (dotted) show 
the upper bounds from VC theory (for the top curves R=l). 

Starting with a small a-value we have observed that the margin can be maximised 
rapidly. Furthermore, the margin remains close to 1 if a is incremented by a small 
amount. Consequently, we can study the performance of the system by traversing 
a range of a-values, alternately incrementing a then maximising the margin using 
the previous optimal set of a-values as a starting point. We have found that this 
procedure does not add a significant computational cost in general. For example, 
for the sonar classification dataset mentioned above and starting at a = 0.1 with 
increments ~a = 0.1 it took 186 iterations to reach a = 1.0 and 4895 to reach 
a = 2.0 as against 110 and 2624 iterations for learning at both these a-values. For 
a rough doubling of the learning time it is possible to determine a reasonable value 
for a for good generalisation without use of a validation set. 



210 N Cristianini, C Campbell and J Shawe-Taylor 

.. " ...... 
". -", 

'. '. '. O. o. 
\ 

0 7 07 \. 
\'" '. 

O. -' O. \. 
\ 

0' 
\\., 

02 \ 
, 
"-'. 

0' 

~ 
0 0 

0 10 0 12 

Figure 3: Generalisation error (solid curve) and upper bound from VC theory 
(dashed curve with R=l) for digits 0 and 3 from the USPS dataset of handwritten 
digits. 

5 Conclusion 

We have presented an algorithm which automatically learns the kernel parameter 
with little additional cost, both in a computational and sample-complexity sense. 
Model selection takes place during the learning process itself, and experimental 
results are provided showing that this strategy provides a good estimate of the 
correct model complexity. 

References 

[1] Aizerman, M., Braverman, E ., and Rozonoer , L. (1964) . Theoretical Foundations of 
the Potential Function Method in Pattern Recognition Learning, A utomations and 
Remote Control, 25:821-837. 

[2] Bartlett P., Shawe-Taylor J ., (1998). Generalization Performance of Support Vector 
Machines and Other Pattern Classifiers. 'Advances in Kernel Methods - Support Vector 
Learning', Bernhard Sch61kopf, Christopher J . C. Burges, and Alexander J . Smola 
(eds.), MIT Press, Cambridge, USA. 

[3] Burges c. , (1998). A tutorial on support vector machines for pattern recognition . Data 
Mining and Knowledge Discovery, 2:l. 

[4] Friess T., Cristianini N., Campbell C. , (1998) The Kernel-Adatron Algorithm: a Fast 
and Simple Learning Procedure for Support Vector Machines, in Shavlik, J. , ed., Ma­
chine Learning: Proceedings of the Fifteenth International Conference, Morgan Kauf­
mann Publishers, San Francisco, CA. 

[5] Gorman R.P. & Sejnowski, T.J. (1988) Neural Networks 1:75-89. 

[6] LeCun, Y., Jackel, L. D. , Bottou, L., Brunot, A., Cortes, C., Denker, J . S., Drucker, H., 
Guyon, I., Muller, U. A., Sackinger, E ., Simard, P. and Vapnik, V., (1995) . Comparison 
of learning algorithms for handwritten digit recognition, International Conference on 
Artificial Neural Networks, Fogelman, F. and Gallinari , P. (Ed.), pp. 53-60. 

[7] Shawe-Taylor, J ., Bartlett, P., Williamson, R. & Anthony, M. (1996) . Structural Risk 
Minimization over Data-Dependent Hierarchies NeuroCOLT Technical Report NC­
TR-96-053 (ftp://ftp.des .rhbne .ae. uk /pub/neuroeolt/teeh_reports). 

[8] Ster, B., & Dobnikar, A. (1996) Neural networks in medical diagnosis: comparison with 
other methods. In A. Bulsari et al. (ed.) Proceedings of the International Conference 
EA NN '96, p. 427-430. 

[9] Vapnik , V. (1995) The Nature of Statistical Learning Theory, Springer Verlag. 

[10] James, Robert C. (1966) Advanced calculus Belmont, Calif. : Wadsworth 


