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Abstract 

In this paper we introduce a new class of image models, which we 
call dynamic trees or DTs. A dynamic tree model specifies a prior 
over a large number of trees, each one of which is a tree-structured 
belief net (TSBN). Experiments show that DTs are capable of 
generating images that are less blocky, and the models have better 
translation invariance properties than a fixed, "balanced" TSBN. 
We also show that Simulated Annealing is effective at finding trees 
which have high posterior probability. 

1 Introduction 

In this paper we introduce a new class of image models, which we call dynamic 
trees or DTs. A dynamic tree model specifies a prior over a large number of trees, 
each one of which is a tree-structured belief net (TSBN) . Our aim is to retain 
the advantages of tree-structured belief networks, namely the hierarchical structure 
of the model and (in part) the efficient inference algorithms, while avoiding the 
"blocky" artifacts that derive from a single, fixed TSBN structure. One use for 
DTs is as prior models over labellings for image segmentation problems. 

Section 2 of the paper gives the theory of DTs, and experiments are described in 
section 3. 

2 Theory 

There are two essential components that make up a dynamic tree network (i) the 
tree architecture and (ii) the nodes and conditional probability tables (CPTs) in 
the given tree. We consider the architecture question first. 
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Figure 1: (a) "Naked" nodes, (b) the "balanced" tree architecture, (c) a sample 
from the prior over Z, (d) data generated from the tree in (c). 

Consider a number of nodes arranged into layers, as in Figure lea). We wish 
to construct a tree structure so that any child node in a particular layer will be 
connected to a parent in the layer above. We also allow there to be a null parent for 
each layer, so that any child connected to it will become a new root. (Technically we 
are constructing a forest rather than a tree.) An example of a structure generated 
using this method is shown in Figure 1 ( c). 

There are a number of ways of specifying a prior over trees. If we denote by Zi the 
indicator vector which shows to which parent node i belongs, then the tree structure 
is specified by a matrix Z whose columns are the individual Zi vectors (one for each 
node). The scheme that we have investigated so far is to set P(Z) = It P(Zi). 

In our work we have specified P(Zi) as follows. Each child node is considered to 
have a "natural" parent-its parent in the balanced structure shown in Figure l(b). 
Each node in the parent layer is assigned an "affinity" for each child node, and 
the "natural" parent has the highest affinity. Denote the affinity of node k in the 
parent layer by ak. Then we choose P(Zi = ek) = e!3a/e / EjEPai e!3a j, where (3 is 
some positive constant and ek is the unit vector with a 1 in position k. Note that 
the "null" parent is included in the sum, and has affinity anull associated with it, 
which affects the relative probability of "orphans". We have named this prior the 
"full-time-node-employment" prior as all the nodes participate in the creation of 
the tree structure to some degree. 

Having specified the prior over architectures, we now need to translate this into a 
TSBN. The units in the tree are taken to be C-class multinomial random variables. 
Each layer of the structure has associated with it a prior probability vector 7f1 

and CPT MI. Given a particular Z matrix which specifies a forest structure, the 
probability of a particular instantiation of all of the random variables is simply 
the product of the probabilities of all of the trees, where the appropriate root 
probabilities and CPTs are picked up from the 7fIS and MIS. A sample generated 
from the tree structure in Figure l(c) is shown in Figure led). 
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Our intuition as to why DTs may be useful image models is based on the idea that 
most pixels in an image are derived from a single object. We think of an object as 
being described by a root of a tree, with the scale of the object being determined 
by the level in the tree at which the root occurs. In this interpretation the ePTs 
will have most of their probability mass on the diagonal. 

Given some data at the bottom layer of units, we can form a posterior over the tree 
structures and node instantiations of the layers above. This is rather like obtaining 
a set of parses for a number of sentences using a context-free grammar l . 

In the DT model as described above different examples are explained by different 
trees. This is an important difference with the usual priors over belief networks as 
used, e.g. in Bayesian averaging over model structures. Also, in the usual case of 
model averaging, there is normally no restriction to TSBN structures, or to tying 
the parameters (1rIS and MIS) between different structures. 

2.1 Inference in DTs 

We now consider the problem of inference in DTs, i.e. obtaining the posterior 
P(Z, XhlXv) where Z denotes the tree-structure, Xv the visible units (the image 
clamped on the lowest level) and X h the hidden units. In fact, we shall concen­
trate on obtaining the posterior marginal P(ZIXv), as we can obtain samples from 
P(XhIXv, Z) using standard techniques for TSBNs. 

There are a very large number of possible structures; in fact for a set of nodes cre­
ated from a balanced tree with branching factor b and depth D (with the top level 
indexed by 1) there are IT~=2(b(d-2) + l)b(d-l) possible forest structures. Our ob­
jective will be to obtain the maximum a posteriori (MAP) state from the posterior 
P(ZIXv) ex P(Z)P(XvIZ) using Simulated Annealing.2 This is possible because 
two components P(Z) and P(XvIZ) are readily evaluated. P(XvIZ) can be com­
puted from ITr (Exr A(Xr )'7r(xr)), where A(Xr) and 7r(xr) are the Pearl-style vectors 
of each root r of the forest. 

An alternative to sampling from the posterior P(Z, XhlXv) is to use approximate 
inference. One possibility is to use a mean-field-type approximation to the posterior 
of the form QZ(Z)Qh(Xh) (Zoubin Ghahramani, personal communication, 1998). 

2.2 Comparing DTs to other image models 

Fixed-structure TSBNs have been used by a number of authors as models of images 
(Bouman and Shapiro, 1994), (Luettgen and Willsky, 1995). They have an attract­
ive multi-scale structure, but suffer from problems due to the fixed tree structure, 
which can lead to very "blocky" segmentations. Markov Random Field (MRF) 
models are also popular image models; however, one of their main limitations is 
that inference in a MRF is NP-hard. Also, they lack an hierarchical structure. On 
the other hand, stationarity of the process they define can be easily ensured, which 

lCFGs have a O(n3 ) algorithm to infer the MAP parse; however, this algorithm depends 
crucially on the one-dimensional ordering of the inputs. We believe that the possibility of 
crossed links in the DT architecture means that this kind of algorithm is not applicable to 
the DT case. Also, the DT model can be applied to 2-d images, where the O(n3 ) algorithm 
is not applicable. 

2It is also possible to sample from the posterior using, e.g. Gibbs Sampling. 
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is not the case for fixed-structure TSBNs. One strategy to overcome the fixed struc­
ture of TSBNs is to break away from the tree structure, and use belief networks 
with cross connections e.g. (Dayan et ai., 1995). However, this means losing the 
linear-time belief-propagation algorithms that can be used in trees (Pearl, 1988) 
and using approximate algorithms. While it is true that inference over DTs is also 
NP-hard, we do retain a"clean" semantics based on the fact that we expect that 
each pixel should belong to one object, which may lead to useful approximation 
schemes. 

3 Experiments 

In this section we describe two experiments conducted on the DT models. The first 
has been designed to compare the translation performance of DTs with that of the 
balanced TSBN structure and is described in section 3.1. In section 3.2 we generate 
2-d images from the DT model, find the MAP Dynamic Tree for these images, and 
contrast their performance in relative to the balanced TSBN. 

3.1 Comparing DTs with the balanced TSBN 

We consider a 5-1ayer binary tree with 16 leaf nodes, as shown in Figure 1. Each node 
in the tree is a binary variable, taking on values of white/black. The 7r1'S, M,'s and 
affinities were set to be equal in each layer. The values used were 7r = (0.75,0.25) 
with 0.75 referring to white, and M had values 0.99 on the diagonal and 0.01 off­
diagonal. The affinities3 were set as 1 for the natural parent, 0 for the nearest 
neighbour(s) of the natural parent, -00 for non-nearest neighbours and anull = 0, 
with f3 = 1.25. 
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(b) 4 black nodes 

Figure 2: Plots of the unnormalised log posterior vs position of the input pattern 
for (a) the 5-black-nodes pattern and (b) 4-black-nodes pattern. 

To illustrate the effects of translation, we have taken a stimulus made up of a bar 
of five black pixels, and moved it across the image. The unnormalised log posterior 
for a particular Z configuration is logP(Z) + logP(XvIZ). This is computed for 
the balanced TSBN architecture, and compared to the highest value that can be 
found by conducting a search over Z. These results are plotted in Figure 2(a). 
The x-axis denotes the position of the left hand end of the bar (running from 1 to 

3The affinities are defined up to the addition of an arbitrary constant. 
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12), and the y-axis shows the posterior probability. Note that due to symmetries 
there are in reality fewer than 12 distinct configurations. Figure 2(a) shows clearly 
that the balanced TSBN is a poor model for this stimulus, and that much better 
interpretations can be found using DTs, even though the "natural parent" idea 
ensures that the logP(Z) is always larger for the balanced tree. 

Notice also how the balanced TSBN displays greater sensitivity of the log posterior 
with respect to position than the DT model. Figure 2 shows both the "optimal" 
log posterior (found "by hand", using intuitions as to the best trees), and the those 
of the MAP models discovered by Simulated Annealing. Annealing was conducted 
from a starting temperature of 1.0 and exponentially decreased by a factor of 0.9. 
At each temperature up to 2000 proposals could be made, although transition to 
the next temperature would occur after 200 accepted steps. The run was deemed to 
have converged after five successive temperature steps were made without accepting 
a single step. We also show the log posterior of trees found by Gibbs sampling from 
which we report the best configuration found from four separate runs (with different 
random starting positions), each of which was run for 25,000 sweeps through all of 
the nodes . 

In Figure 2(b) we have shown the log posterior for a stimulus made up of four black 
nodes4 . In this case the balanced TSBN is even more sensitive to the stimulus 
location, as the four black nodes fit exactly under one sub-tree when they are 
in positions 1, 5, 9 or 13. By contrast, the dynamic tree is less sensitive to the 
alignment, although it does retain a preference for the configuration most favoured 
by the balanced TSBN. This is due to the concept of a "natural" parent built into 
the (current) architecture (but see Section 4 for further discussion) . 

Clearly these results are somewhat sensitive to settings of the parameters. One of 
the most important parameters is the diagonal entry in the CPT. This controls the 
relative desirability of having a disconnection against a transition in the tree that 
involves a colour change. For example, if the diagonal entry in the CPT is reduced 
to 0.95, the gap between the optimal and balanced trees in Figure 2(b) is decreased. 
We have experimented with CPT entries of 0.90,0.95 and 0.99, but otherwise have 

. not needed to explore the parameter space to obtain the results shown. 

3.2 Generating from the prior and finding the MAP Tree in 2-d 

We now turn our attention to 2-d images. Considering a 5 layer quad-tree node 
arrangement gives a total of 256 leaf nodes or a 16x16 pixel image. A structural 
plot of such a tree generated from the prior is shown in figure 3. 

Each sub-plot is a slice through the tree showing the nodes on successive levels. 
The boxes represent a single node on the current level and their shading indicates 
the tree to which they belong. Nodes in the parent layer above are superimposed 
as circles and the lines emanating from them shows their connectivity. Black circles 
with a smaller white circle inside are used to indicate root nodes. Thus in the 
example above we see that the forest consists of five trees, four of whose roots lie 
at level 3 (which between them account for most of the black in the image, Figure 
3(f», while the root node at level 1 is responsible for the background. 

4The parameters are the same as above, except that anull in level 3 was set to 10.0 to 
encourage disconnections at this level. 
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Figure 3: Plot of the MAP Dynamic Tree of the accompanying image (f). 

Broadly speaking the parameters for the 2-d DTs were set to be similar to the I-d 
trees of the previous section, except that the disconnection affinities were set to 
favour disconnections higher up the tree, and to values for the leaf level such that 
leaf disconnection probabilities tend to zero. In practice this resulted in all leaves 
being connected to parent nodes (which is desirable as we believe that single-pixel 
objects are unlikely). The (3 values increase with tree depth so that lower levels 
nodes choose parents from a tighter neighbourhood. The 7ft and M t values were 
unchanged, and again we consider binary valued nodes. 

A suite of 600 images were created by sampling DTs from the above prior and then 
generating 5 images from each. Figure 3(f) shows an example of an image generated 
by the DT and it can be seen that the "blockiness" exhibited by balanced TSBNs 
is not present . 

. ':. . 
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Figure 4: (a) Comparison of the MAP DT log posterior against that of the quad-tree 
for 600 images, (b) tree generated from the "part-time-node-employment" prior. 
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The MAP Dynamic Tree for each of these images was found by Simulated Annealing 
using the same exponential strategy described earlier, and their log posteriors are 
compared with those of the balanced TSBN in the plot 4(a). The line denotes the 
boundary of equal log posterior and the location of all the points above this clearly 
shows that in every case the MAP tree found has a higher posterior. 

4 Discussion 

Above we have demonstrated that DT models have greater translation invariance 
and do not exhibit the blockiness of the balanced TSBN model. We also see that 
Simulated Annealing methods are successful at finding trees that have high posterior 
probability. 

We now discuss some extensions to the model. In the work above we have kept the 
balanced tree arrangement of nodes. However, this could be relaxed, giving rise to 
roughly equal numbers of nodes at the various levels (cf stationary wavelets). This 
would be useful (a) for providing better translation invariance and (b) to avoid 
slight shortages of hidden units that can occur when patterns that are "misaligned" 
wrt the balanced tree are presented. In this case the prior over Z would need to be 
adjusted to ensure a high proportion of tree-like structures, by generating the z's 
and x's in layers, so that the z's can be contingent on the states of the units in the 
layer above. We have devised a prior of this nature and called it the "part-time­
employment" prior as the nodes can decide whether or not they wish to be employed 
in the tree structure or remain redundant and inactive. An example tree generated 
from this prior is shown in figure 4(b); we plan to explore this direction further 
in on-going research. Other research directions include the learning of parameters 
in the networks (e.g. using EM), and the introduction of additional information 
at the nodes; for example one might use real-valued variables in addition to the 
multinomial variables considered above. These additional variables might be used to 
encode information such as that concerning the instantiation parameters of objects. 
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