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Abstract 

We propose a new in-sample cross validation based method (randomized 
GACV) for choosing smoothing or bandwidth parameters that govern the 
bias-variance or fit-complexity tradeoff in 'soft' classification. Soft clas­
sification refers to a learning procedure which estimates the probability 
that an example with a given attribute vector is in class 1 vs class O. The 
target for optimizing the the tradeoff is the Kullback-Liebler distance 
between the estimated probability distribution and the 'true' probabil­
ity distribution, representing knowledge of an infinite population. The 
method uses a randomized estimate of the trace of a Hessian and mimics 
cross validation at the cost of a single relearning with perturbed outcome 
data. 

1 INTRODUCTION 

We propose and test a new in-sample cross-validation based method for optimizing the bias­
variance tradeoff in 'soft classification' (Wahba et al1994), called ranG ACV (randomized 
Generalized Approximate Cross Validation) . Summarizing from Wahba et al(l994) we are 
given a training set consisting of n examples, where for each example we have a vector 
t E T of attribute values, and an outcome y, which is either 0 or 1. Based on the training 
data it is desired to estimate the probability p of the outcome 1 for any new examples in the 
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future. In 'soft' classification the estimate p(t) of p(t) is of particular interest, and might be 
used by a physician to tell patients how they might modify their risk p by changing (some 
component of) t, for example, cholesterol as a risk factor for heart attack. Penalized like­
lihood estimates are obtained for p by assuming that the logit f(t), t E T, which satisfies 
p(t) = ef(t) 1(1 + ef(t») is in some space 1{ of functions . Technically 1{ is a reproducing 
kernel Hilbert space, but you don't need to know what that is to read on. Let the training 
set be {Yi, ti, i = 1,···, n}. Letting Ii = f(td, the negative log likelihood .c{Yi, ti, fd of 
the observations, given f is 

n 

.c{Yi, ti, fd = 2::[-Ydi + b(li)], (1) 
i=1 

where b(f) = log(l + ef ). The penalized likelihood estimate of the function f is the 
solution to: Find f E 1{ to minimize h. (I): 

n 

h.(f) = 2::[-Ydi + b(ld) + J>.(I), (2) 
i =1 

where 1>.(1) is a quadratic penalty functional depending on parameter(s) A = (AI, ... , Aq) 
which govern the so called bias-variance tradeoff. Equivalently the components of A con­
trol the tradeoff between the complexity of f and the fit to the training data. In this paper we 
sketch the derivation of the ranG ACV method for choosing A, and present some prelim­
inary but favorable simulation results, demonstrating its efficacy. This method is designed 
for use with penalized likelihood estimates, but it is clear that it can be used with a variety 
of other methods which contain bias-variance parameters to be chosen, and for which mini­
mizing the Kullback-Liebler (K L) distance is the target. In the work of which this is a part, 
we are concerned with A having multiple components. Thus, it will be highly convenient 
to have an in-sample method for selecting A, if one that is accurate and computationally 
convenient can be found. 

Let P>. be the the estimate and p be the 'true' but unknown probability function and let 
Pi = p(td,p>.i = p>.(ti ). For in-sample tuning, our criteria for a good choice of A is 

the KL distance KL(p,p>.) = ~ E~I[PilogP7. + (1- pdlogg~::?)]. We may replace 
K L(p,p>.) by the comparative K L distance (C K L), which differs from K L by a quantity 
which does not depend on A. Letting hi = h (ti), the C K L is given by 

1 n 
CKL(p,p>.) == CKL(A) = ;;, 2:: [-pd>'i + b(l>.i)). (3) 

i=) 

C K L(A) depends on the unknown p, and it is desired is to have a good estimate or proxy 
for it, which can then be minimized with respect to A. 

It is known (Wong 1992) that no exact unbiased estimate of CK L(A) exists in this case, so 
that only approximate methods are possible. A number of authors have tackled this prob­
lem, including Utans and M90dy(1993), Liu(l993), Gu(1992). The iterative U BR method 
of Gu(l992) is included in GRKPACK (Wang 1997), which implements general smooth­
ing spline ANOVA penalized likelihood estimates with multiple smoothing parameters. It 
has been successfully used in a number of practical problems, see, for example, Wahba 
et al (1994,1995). The present work represents an approach in the spirit of GRKPACK 
but which employs several approximations, and may be used with any data set, no matter 
how large, provided that an algorithm for solving the penalized likelihood equations, either 
exactly or approximately, can be implemented. 
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2 THE GACV ESTIMATE 

In the general penalized likelihood problem the minimizer 1>,(-) of (2) has a representation 

M n 

1>.(t) = L dv<Pv(t) + L CiQ>.(ti, t) (4) 
v=l i=l 

where the <Pv span the null space of 1>" Q>.(8, t) is a reproducing kernel (positive definite 
function) for the penalized part of 7-1., and C = (Cl' ... ,Cn)' satisfies M linear conditions, 
so that there are (at most) n free parameters in 1>.. Typically the unpenalized functions 
<Pv are low degree polynomials. Examples of Q(ti,') include radial basis functions and 
various kinds of splines; minor modifications include sigmoidal basis functions, tree basis 
functions and so on. See, for example Wahba( 1990, 1995), Girosi, Jones and Poggio( 1995). 
If f>.C) is of the form (4) then 1>,(f>.) is a quadratic form in c. Substituting (4) into (2) 
results in h a convex functional in C and d, and C and d are obtained numerically via a 
Newton Raphson iteration, subject to the conditions on c. For large n, the second sum on 

the right of (4) may be replaced by L~=1 Cik Q>. (tik , t), where the tik are chosen via one 
of several principled methods. 

To obtain the CACV we begin with the ordinary leaving-out-one cross validation function 
CV(.\) for the CKL: 

n 

( _ 1 "" [-i] ( ] CV .\) - - LJ-yd>.i + b 1>.i) , 
n 

(5) 
i=1 

where fl- i ] the solution to the variational problem of (2) with the ith data point left out 

and fti] is the value of fl- i] at ti . Although f>.C) is computed by solving for C and d 
the CACV is derived in terms of the values (it"", fn)' of f at the ti. Where there is 
no confusion between functions f(-) and vectors (it, ... ,fn)' of values of fat tl, ... ,tn, 
we let f = (it, ... " fn)'. For any f(-) of the form (4), J>. (f) also has a representation as 
a non-negative definite quadratic form in (it, . .. , fn)'. Letting L:>. be twice the matrix of 
this quadratic form we can rewrite (2) as 

n 1 
h(f,Y) = L[-Ydi + b(/i)] + 2f'L:>.f. 

i=1 

(6) 

Let W = W(f) be the n x n diagonal matrix with (/ii == Pi(l - Pi) in the iith position. 
Using the fact that (/ii is the second derivative of b(fi), we have that H = [W + L:>.] - 1 
is the inverse Hessian of the variational problem (6). In Xiang and Wahba (1996), several 
Taylor series approximations, along with a generalization of the leaving-out-one lemma 
(see Wahba 1990) are applied to (5) to obtain an approximate cross validation function 
ACV(.\), which is a second order approximation to CV(.\) . Letting hii be the iith entry 
of H , the result is 

CV(.\) ~ ACV('\) = .!. t[-Yd>.i + b(f>.i)] + .!. t hiiYi(Yi - P>.i) . (7) 
n i= l n i=1 [1 - hiwii] 

Then the GACV is obtained from the ACV by replacing hii by ~ L~1 hii == ~tr(H) 
and replacing 1 - hiWii by ~tr[I - (Wl/2 HWl/2)], giving 

1 ~ ] tr(H) L~l Yi(Yi - P>.i) 
CACV('\) = ;; t;;[-Yd>.i + b(1).i) + -n-tr[I _ (Wl/2HWl /2)] , (8) 

where W is evaluated at 1>.. Numerical results based on an exact calculation of (8) appear 
in Xiang and Wahba (1996). The exact calculation is limited to small n however. 
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3 THE RANDOMIZED GACV ESTIMATE 

Given any 'black box' which, given >., and a training set {Yi, ti} produces f>. (.) as the min­
imizer of (2), and thence f>. = (fA 1 , "' , f>.n)', we can produce randomized estimates of 
trH and tr[! - W 1/ 2 HW 1/2 J without having any explicit calculations of these matrices. 
This is done by running the 'black box' on perturbed data {Vi + <5i , td. For the Yi Gaus­
sian, randomized trace estimates of the Hessian of the variational problem (the 'influence 
matrix') have been studied extensively and shown to be essentially as good as exact calcu­
lations for large n, see for example Girard(1998) . Randomized trace estimates are based 
on the fact that if A is any square matrix and <5 is a zero mean random n-vector with inde­
pendent components with variance (TJ, then E<5' A<5 = ~ tr A. See Gong et al( 1998) and 

u" 
references cited there for experimental results with multiple regularization parameters. Re-
turning to the 0-1 data case, it is easy to see that the minimizer fA(') of 1;.. is continuous in 
Y, not withstanding the fact that in our training set the Yi take on only values 0 or 1. Letting 

if = UA1,"', f>.n)' be the minimizer of (6) given y = (Y1,"', Yn)', and if+O be the 
minimizer given data y+<5 = (Y1 +<51, ... ,Yn +<5n)' (the ti remain fixed), Xiang and Wahba 
(1997) show, again using Taylor series expansions, that if+O - ff ,....., [WUf) + ~AJ-1<5. 
This suggests that ~<5'Uf+O - ff) provides an estimate oftr[W(ff) + ~At1. However, 

u" 
if we take the solution ff to the nonlinear system for the original data Y as the initial value 

for a Newton-Raphson calculation of ff+O things become even simpler. Applying a one 
step Newton-Raphson iteration gives 

(9) 

Since Pjf(ff,y + <5) = -<5 + PjfUf,Y) = -<5, and [:;~f(ff,Y + <5)J - 1 

[ 82 h(fY )J- 1 h f y+o,l - fY [ 8 2 h(fY )J- 1 J: h f y+o,l fY 8?7if A' Y ,we ave A - A + 8?7if A' Y u so t at A - A 
[WUf) + EAt 1<5. The result is the following ranGACV function: 

n <5' (fY+O,l fY) ",n ( ) 
ranGACV(>.) = .!. ~[- 'I '+bU .)J+ A - A wi=l Yi Yi - PAi . 

n ~ Yz At At n [<5'<5 - <5'WUf)Uf+O,l - ff)J 
(10) 

To reduce the variance in the term after the '+' in (10), we may draw R 
independent replicate vectors <51,'" ,<5R , and replace the term after the '+' in 

(1O)b 1... ",R o:(fr Hr .1 -ff) 2:7-1 y.(y.-P>..) to obtain an R-replicated 
y R wr=l n [O~Or-O~ W(fn(f~+Ar . l-ff)1 

ranGACV(>.) function. 

4 NUMERICAL RESULTS 

In this section we present simulation results which are representative of more extensive 
simulations to appear elsewhere. In each case, K < < n was chosen by a sequential clus­
tering algorithm. In that case, the ti were grouped into K clusters and one member of each 
cluster selected at random. The model is fit. Then the number of clusters is doubled and the 
model is fit again. This procedure continues until the fit does not change. In the randomized 
trace estimates the random variates were Gaussian. Penalty functionals were (multivariate 

generalizations of) the cubic spline penalty functional>. fa1 U" (X))2, and smoothing spline 
ANOVA models were fit. 
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4.1 EXPERIMENT 1. SINGLE SMOOTHING PARAMETER 

In this experiment t E [0,1], f(t) = 2sin(10t), ti = (i - .5)/500, i = 1,···,500. A 
random number generator produced 'observations' Yi = 1 with probability Pi = el , /(1 + 
eli), to get the training set. Q A is given in Wahba( 1990) for this cubic spline case, K = 50. 
Since the true P is known, the true CKL can be computed. Fig. l(a) gives a plot of 
CK L(A) and 10 replicates of ranGACV(A). In each replicate R was taken as 1, and J 
was generated anew as a Gaussian random vector with (115 = .001. Extensive simulations 
with different (115 showed that the results were insensitive to (115 from 1.0 to 10-6 • The 
minimizer of C K L is at the filled-in circle and the 10 minimizers of the 10 replicates of 
ranGACV are the open circles. Anyone of these 10 provides a rather good estimate of 
the A that goes with the filled-in circle. Fig. l(b) gives the same experiment, except that 
this time R = 5. It can be seen that the minimizers ranGACV become even more reliable 
estimates of the minimizer of C K L, and the C K L at all of the ranG ACV estimates are 
actually quite close to its minimum value. 

4.2 EXPERIMENT 2. ADDITIVE MODEL WITH A = (Al' A2) 

Here t E [0,1] 0 [0,1]. n = 500 values of ti were generated randomly according to 
a uniform distribution on the unit square and the Yi were generated according to Pi = 
eli j(l + el ,) with t = (Xl,X2) and f(t) = 5 sin 27rXl - 3sin27rX2. An additive model 
as a special case of the smoothing spline ANOVA model (see Wahba et al, 1995), of the 
form f(t) = /-l + h(xd + h(X2) with cubic spline penalties on hand h were used. 
K = 50, (115 = .001, R = 5. Figure l(c) gives a plot of CK L(Al' A2) and Figure l(d) 
gives a plot of ranGACV(Al, A2). The open circles mark the minimizer of ranGACV 
in both plots and the filled in circle marks the minimizer of C K L. The inefficiency, as 

measured by CKL()..)/minACKL(A) is 1.01. Inefficiencies near 1 are typical of our 
other similar simulations. 

4.3 EXPERIMENT 3. COMPARISON OF ranGACV AND UBR 

This experiment used a model similar to the model fit by GRKPACK for the risk of 
progression of diabetic retinopathy given t = (Xl, X2, X3) = (duration, glycosylated 
hemoglobin, body mass index) in Wahba et al(l995) as 'truth'. A training set of 669 
examples was generated according to that model, which had the structure f(Xl, X2, X3) = 
/-l + fl (xd + h (X2) + h (X3) + fl,3 (Xl, X3). This (synthetic) training set was fit by GRK­
PACK and also using K = 50 basis functions with ranG ACV. Here there are P = 6 
smoothing parameters (there are 3 smoothing parameters in f13) and the ranGACV func­
tion was searched by a downhill simplex method to find its minimizer. Since the 'truth' is 
known, the CKL for)" and for the GRKPACK fit using the iterative UBR method were 
computed. This was repeated 100 times, and the 100 pairs of C K L values appears in Fig­
ure l(e). It can be seen that the U BR and ranGACV give similar C K L values about 90% 
of the time, while the ranG ACV has lower C K L for most of the remaining cases. 

4.4 DATA ANALYSIS: AN APPLICATION 

Figure 1(f) represents part of the results of a study of association at baseline of pigmentary 
abnormalities with various risk factors in 2585 women between the ages of 43 and 86 in the 
Beaver Dam Eye Study, R. Klein et al( 1995). The attributes are: Xl = age, X2 =body mass 
index, X3 = systolic blood pressure, X4 = cholesterol. X5 and X6 are indicator variables for 
taking hormones, and history of drinking. The smoothing spline ANOVA model fitted was 
f(t) = /-l+dlXl +d2X2 + h(X3)+ f4(X4)+ h4(X3, x4)+d5I(x5) +d6I(x6), where I is the 
indicator function. Figure l(e) represents a cross section of the fit for X5 = no, X6 = no, 
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X2, X3 fixed at their medians and Xl fixed at the 75th percentile. The dotted lines are the 
Bayesian confidence intervals, see Wahba et al( 1995). There is a suggestion of a borderline 
inverse association of cholesterol. The reason for this association is uncertain. More details 
will appear elsewhere. 

Principled soft classification procedures can now be implemented in much larger data sets 
than previously possible, and the ranG ACV should be applicable in general learning. 
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Figure 1: (a) and (b): Single smoothing parameter comparison of ranGACV and CK L. 
(c) and (d): Two smoothing parameter comparison of ranGACV and CK L. (e): Compar­
ison of ranG ACV and U B R. (f): Probability estimate from Beaver Dam Study 
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Abstract 

This paper describes a Bayesian graph matching algorithm for 
data-mining from large structural data-bases. The matching al­
gorithm uses edge-consistency and node attribute similarity to de­
termine the a posteriori probability of a query graph for each of the 
candidate matches in the data-base. The node feature-vectors are 
constructed by computing normalised histograms of pairwise ge­
ometric attributes. Attribute similarity is assessed by computing 
the Bhattacharyya distance between the histograms. Recognition 
is realised by selecting the candidate from the data-base which has 
the largest a posteriori probability. We illustrate the recognition 
technique on a data-base containing 2500 line patterns extracted 
from real-world imagery. Here the recognition technique is shown 
to significantly outperform a number of algorithm alternatives. 

1 Introduction 

Since Barrow and Popplestone [1] first suggested that relational structures could be 
used to represent and interpret 2D scenes, there has been considerable interest in the 
machine vision literature in developing practical graph-matching algorithms [8, 3, 
10]. The main computational issues are how to compare relational descriptions when 
there is significant structural corruption [8, 10] and how to search for the best match 
[3]. Despite resulting in significant improvements in the available methodology for 
graph-matching, there has been little progress in applying the resulting algorithms 
to large-scale object recognition problems. Most of the algorithms developed in the 
literature are evaluated for the relatively simple problem of matching a model-graph 
against a scene known to contain the relevant structure. A more realistic problem is 
that of taking a large number (maybe thousands) of scenes and retrieving the ones 
that best match the model. Although this problem is key to data-mining from large 
libraries of visual information, it has invariably been approached using low-level 
feature comparison techniques. Very little effort [7,4] has been devoted to matching 

• corresponding author erh@cs.york.ac.uk 
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higher-level structural primitives such as lines, curves or regions. Moreover, because 
of the perceived fragility of the graph matching process, there has been even less 
effort directed at attempting to retrieve shapes using relational information. 

Here we aim to fill this gap in the literature by using graph-matching as a means 
of retrieving the shape from a large data-based that most closely resembles a query 
shape. Although the indexation images in large data-bases is a problem of current 
topicality in the computer vision literature [5, 6, 9], the work presented in this 
paper is more ambitious. Firstly, we adopt a structural abstraction of the shape 
recognition problem and match using attributed relational graphs. Each shape in 
our data-base is a pattern of line-segments. The structural abstraction is a nearest 
neighbour graph for the centre-points of the line-segments. In addition, we exploit 
attribute information for the line patterns. Here the geometric arrangement of the 
line-segments is encapsulated using a histogram of Euclidean invariant pairwise (bi­
nary) attributes. For each line-segment in turn we construct a normalised histogram 
of relative angle and length with the remaining line-segments in the pattern. These 
histograms capture the global geometric context of each line-segment. Moreover, 
we interpret the pairwise geometric histograms as measurement densities for the 
line-segments which we compare using the Bhattacharyya distance. 

Once we have established the pattern representation, we realise object recognition 
using a Bayesian graph-matching algorithm. This is a two-step process. Firstly, 
we establish correspondence matches between the individual tokens in the query 
pattern and each of the patterns in the data-base. The correspondences matches 
are sought so as to maximise the a posteriori measurement probability. Once the 
MAP correspondence matches have been established, then the second step in our 
recognition architecture involves selecting the line-pattern from the data-base which 
has maximum matching probability. 

2 MAP Framework 

Formally our recognition problem is posed as follows. Each ARG in the database is 
a triple, G = (Vc, Ec, Ac), where Vc is the set of vertices (nodes), Ec is the edge 
set (Ec C Vc x Vc), and Ac is the set of node attributes. In our experimental 
example, the nodes represent line-structures segmented from 2D images. The edges 
are established by computing the N-nearest neighbour graph for the line-centres. 
Each node j E Vc is characterised by a vector of attributes, ~j and hence Ac = 
{~j jj E Vc}. In the work reported here the attribute-vector is represents the 
contents of a normalised pairwise attribute histogram. 

The data-base of line-patterns is represented by the set of ARG's D = {G}. The 
goal is to retrieve from the data-base D, the individual ARG that most closely 
resembles a query pattern Q = (VQ' EQ, AQ). We pose the retrieval process as one 
of associating with the query the graph from the data-base that has the largest a 
posteriori probability. In other words, the class identity of the graph which most 
closely corresponds to the query is 

wQ = arg max P(G' IQ) 
C'EV 

However, since we wish to make a detailed structural comparison of the graphs, 
rather than comparing their overall statistical properties, we must first establish 
a set of best-match correspondences between each ARG in the data-base and the 
query Q. The set of correspondences between the query Q and the ARG G is 
a relation fc : Vc f-7 VQ over the vertex sets of the two graphs. The mapping 
function consists of a set of Cartesian pairings between the nodes of the two graphs, 
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i.e. Ie = {(a,a);a E Ve,a E VQ} ~ Ve x VQ . Although this may appear to be a 
brute force method, it must be stressed that we view this process of correspondence 
matching as the final step in the filtering of the line-patterns. We provide more 
details of practical implementation in the experimental section of this paper. 

With the correspondences to hand we can re-state our maximum a posteriori prob­
ability recognition objective as a two step process. For each graph G in turn, we 
locate the maximum a posteriori probability mapping function Ie onto the query 
Q. The second step is to perform recognition by selecting the graph whose mapping 
function results in the largest matching probability. These two steps are succinctly 
captured by the following statement of the recognition condition 

wQ = arg max max P(fe,IG', Q) 
e'ED la' 

This global MAP condition is developed into a useful local update formula by apply­
ing the Bayes formula to the a posteriori matching probability. The simplification 
is as follows 

PU IG Q) = p(Ae, AQl/e)P(felVe, Ee, VQ, EQ)P(Ve , Ee)P(VQ, EQ) 
e , P(G)P(Q) 

The terms on the right-hand side of the Bayes formula convey the following 
meaning. The conditional measurement density p(Ae,AQl/e) models the mea­
surement similarity of the node-sets of the two graphs. The conditional prob­
ability P(feIEe, EQ) models the structural similarity of the two graphs under 
the current set of correspondence matches. The assumptions used in develop­
ing our simplification of the a posteriori matching probability are as follows. 
Firstly, we assume that the joint measurements are conditionally independent 
of the structure of the two graphs provided that the set of correspondences is 
known, i.e. P(Ae, AQl/e, Ee, Ve, EQ, VQ) = P(Ae, AQl/e). Secondly, we as­
sume that there is conditional independence of the two graphs in the absence of 
correspondences. In other words, P(Ve, Ee, VQ, EQ) = P(VQ, EQ)P(Ve, Ee) and 
P(G, Q) = P(G)P(Q). Finally, the graph priors P(Ve, Ee) , P(VQ, EQ) P(G) and 
P( Q) are taken as uniform and are eliminated from the decision making process. 

To continue our development, we first focus on the conditional measurement density, 
p(Ae, AQl/e) which models the process of comparing attribute similarity on the 
nodes of the two graphs. Assuming statistical independence of node attributes, the 
conditional measurement density p( Ae, AQ lie), can be factorised over the Cartesian 
pairs (a, a) E Ve x VQ which constitute the the correspondence match Ie in the 
following manner 

p(Ae, AQl/e) = II P(~a' ~ol/e(a) = a) 
(a,o)E/a 

As a result the correspondence matches may be optimised using a simple node-by­
node discrete relaxation procedure. The rule for updating the match assigned to 
the node a of the graph G is 

le(a) = arg max P(~a'~o)l/(a) = a)P(feIEe,EQ) 
oEVQU{4>} 

In order to model the structural consistency of the set of assigned matches,we turn 
to the framework recently reported by Finch, Wilson and Hancock [2}. This work 
provides a framework for computing graph-matching energies using the weighted 
Hamming distance between matched cliques. Since we are dealing with a large-scale 
object recognition system, we would like to minimise the computational overheads 
associated with establishing correspondence matches. For this reason, rather than 
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working with graph neighbourhoods or cliques, we chose to work with the relational 
units of the smallest practical size. In other words we satisfy ourself with measuring 
consistency at the edge level. For edge-units, the structural matching probability 
P(fa!Va, Ea, VQ, EQ) is computed from the formula 

(a,b)EEG (Ct ,(J )EEQ 

where Pe is the probability of an error appearing on one of the edges of the matched 
structure. The Sa,Ct are assignment variables which are used to represent the current 
state of match and convey the following meaning 

Sa Ct = {I if fa (a) = a 
, 0 otherwise 

3 Histogram-based consistency 

We now furnish some details of the shape retrieval task used in our experimental 
evaluation of the recognition method. In particular, we focus on the problem of 
recognising 2D line patterns in a manner which is invariant to rotation, translation 
and scale. The raw information available for each line segment are its orientation 
(angle with respect to the horizontal axis) and its length (see figure 1). To illustrate 
how the Euclidean invariant pairwise feature attributes are computed, suppose that 
we denote the line segments associated with the nodes indexed a and b by the 
vectors Ya and Yb respectively. The vectors are directed away from their point of 
intersection. The pairwise relative angle attribute is given by 

(Ja ,b = arccos [I:: 1·1::1] 
From the relative angle we compute the directed relative angle. This involves giving 

d 

~:.~~: 
b-! ---------c:----;-~:---

~------. o..b ---------------. 
D;b 

Figure 1: Geometry for shape representation 

the relative angle a positive sign if the direction of the angle from the baseline Ya to 
its partner Yb is clockwise and a negative sign if it is counter-clockwise. This allows 
us to extend the range of angles describing pairs of segments from [0,7I"J to [-7I",7I"J. 

The directed relative position {}a,b is represented by the normalised length ratio 
between the oriented baseline vector Ya and the vector yl joining the end (b) of the 
baseline segment (ab) to the intersection of the segment pair (cd). 

1 
{}a,b = D 

l+~ 
2 Dab 
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The physical range of this attribute is (0, IJ. A relative position of 0 indicates that 
the two segments are parallel, while a relative position of 1 indicates that the two 
segments intersect at the middle point of the baseline. 

The Euclidean invariant angle and position attributes 8a,b and {)a ,b are binned in a 
histogram. Suppose that Sa(J-l, v) = {(a , b)18a,b E All 1\ {)a,b E Rv 1\ bE VD} is the 
set of nodes whose pairwise geometric attributes with the node a are spanned by 
the range of directed relative angles All and the relative position attribute range 
Rv. The contents of the histogram bin spanning the two attribute ranges is given 
by Ha(J-l, v) = ISa(J-l, v)l. Each histogram contains nA relative angle bins and nR 

length ratio bins. The normalised geometric histogram bin-entries are computed as 
follows 

Ha(J-l, v) 
ha(J-l, v) = "nA "nR H ( ) 

~Il'=l ~v'=l a J-l, v 
The probability of match between the pattern-vectors is computed using the Bhat­
tacharyya distance between the normalised histograms. 

I:~~l I:~~l ha(J-l, v)ha(J-l, v) 
P(f(a) = al~a' ~a) = L I:nA I:nR h ( )h ( ) = exp[-Ba ,aJ 

j'EQ Il'=l v'=l a J-l, V a J-l, V 

With this modelling ingredient , the condition for recognition is 

WQ = arg~~% L L {-Ba,a-Bb,iJ+ln(I-Pe)Sa,aSb,iJ+lnPe(I-Sa,aSb,/3)} 
(a , b}EE~ (a,iJ}EEQ 

4 Experiments 

The aim in this section is to evaluate the graph-based recognition scheme on a data­
base of real-world line-patterns. We have conducted our recognition experiments 
with a data-base of 2500 line-patterns each containing over a hundred lines. The 
line-patterns have been obtained by applying line/edge detection algorithms to the 
raw grey-scale images followed by polygonisation. For each line-pattern in the data­
base, we construct the six-nearest neighbour graph. The feature extraction process 
together with other details of the data used in our study are described in recent 
papers where we have focussed on the issues of histogram representation [4J and the 
optimal choice of the relational structure for the purposes of recognition. In order to 
prune the set of line-patterns for detailed graph-matching we select about 10% of the 
data-base using a two-step process. This consists of first refining the data-base using 
a global histogram of pairwise attributes [4J . The top quartile of matches selected 
in this way are then further refined using a variant of the Haussdorff distance to 
select the set of pairwise attributes that best match against the query. 

The recognition task is posed as one of recovering the line-pattern which most closely 
resembles a digital map. The original images from which our line-patterns have been 
obtained are from a number of diverse sources. However , a subset of the images are 
aerial infra-red line-scan views of southern England. Two of these infra-red images 
correspond to different views of the area covered by the digital map. These views 
are obtained when the line-scan device is flying at different altitudes. The line-scan 
device used to obtain the aerial images introduces severe barrel distortions and 
hence the map and aerial images are not simply related via a Euclidean or affine 
transformation. The remaining line-patterns in the data-base have been extracted 
from trademarks and logos. It is important to stress that although the raw images 
are obtained from different sources, there is nothing salient about their associated 
line-pattern representations that allows us to distinguish them from one-another. 
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(a) Digital Map (b) Target 1 (c) Target 2 

Figure 2: Images from the data-base 

Moreover, since it is derived from a digital map rather than one of the images in 
the data-base, the query is not identical to any of the line-patterns in the model 
library. 

We aim to assess the importance of different attributes representation on the re­
trieval process. To this end, we compare node-based and the histogram-based at­
tribute representation. \Ve also consider the effect of taking the relative angle and 
relative position attributes both singly and in tandem. The final aspect of the 
comparison is to consider the effects of using the attributes purely for initialisation 
purposes and also in a persistent way during the iteration of the matching process. 
To this end we consider the following variants of our algorithm . 

• Non-Persistent Attributes: Here we ignore the attribute information 
provided by the node-histograms after the first iteration and attempt to 
maximise the structural congruence of the graphs . 

• Local attributes: Here we use only the single node attributes rather than 
an attribute histogram to model the a posteriori matching probabilities. 

Graph Matching Strategy Retrieval Iterations 
Accuracy per recall 

ReI. Position Attribute iInitialisation only) 39% 5.2 
ReI. Angle Attribute (Initialisation only) 45% 4.75 

ReI. Angle + Position Attributes (Initialisation only) 58% 4.27 
1D ReI. Position Histogram (Initialisation only) 42% 4.7 

1D ReI. Angle Histogram (Initialisation only) 59% 4.2 
2D Histogram (Initialisation only) 68% 3.9 

ReI. Position Attribute (Persistent) 63% 3.96 
ReI. Angle Attribute (Persistent) 89% 3.59 

ReI. Angle + Position Attributes (Persistent) 98% 3.31 
1D ReI. Position Histogram (Persistent) 66% 3.46 

1D ReI. Angle Histogram (Persistent) 92% 3.23 
2D Histogram (Persistent) 100% 3.12 

Table 1: Recognition performance of various recognition strategies averaged over 
26 queries in a database of 260 line-patterns 

In Table 1 we present the recognition performance for each of the recognition strate­
gies in turn. The table lists the recall performance together with the average number 
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of iterations per recall for each of the recognition strategies in turn. The main fea­
tures to note from this table are as follows . Firstly, the iterative recall using the full 
histogram representation outperforms each of the remaining recognition methods 
in terms of both accuracy and computational overheads. Secondly, it is interesting 
to compare the effect of using the histogram in the initialisation-only and iteration 
persistent modes. In the latter case the recall performance is some 32% better than 
in the former case. In the non-persistent mode the best recognition accuracy that 
can be obtained is 68%. Moreover, the recall is typically achieved in only 3.12 it­
erations as opposed to 3.9 (average over 26 queries on a database of 260 images) . 
Finally, the histogram representation provides better performance, and more signif­
icantly, much faster recall than the single-attribute similarity measure. When the 
attributes are used singly, rather than in tandem, then it is the relative angle that 
appears to be the most powerful. 

5 Conclusions 

We have presented a practical graph-matching algorithm for data-mining in large 
structural libraries. The main conclusion to be drawn from this study is that the 
combined use of structural and histogram information improves both recognition 
performance and recall speed. There are a number of ways in which the ideas 
presented in this paper can be extended. Firstly, we intend to explore more a per­
ceptually meaningful representation of the line patterns, using grouping principals 
derived from Gestalt psychology. Secondly, we are exploring the possibility of for­
mulating the filtering of line-patterns prior to graph matching using Bayes decision 
trees. 
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