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Abstract 

We describe a Reinforcement Learning algorithm for partially observ­
able environments using short-term memory, which we call BLHT. Since 
BLHT learns a stochastic model based on Bayesian Learning, the over­
fitting problem is reasonably solved. Moreover, BLHT has an efficient 
implementation. This paper shows that the model learned by BLHT con­
verges to one which provides the most accurate predictions of percepts 
and rewards, given short-term memory. 

1 INTRODUCTION 

Research on Reinforcement Learning (RL) prob­
lem for partially observable environments is gain­
ing more attention recently. This is mainly because 
the assumption that perfect and complete perception 
of the state of the environment is available for the 
learning agent, which many previous RL algorithms 
require, is not valid for many realistic environments. 

model-free 

Figure I: Three approaches 

One of the approaches to the problem is the model-free approach (Singh et al. 1995; 
Jaakkola et al. 1995) (arrow a in the Fig.l) which gives up state estimation and uses 
memory-less policies. We can not expect the approach to find a really effective policy when 
it is necessary to accumulate information to estimate the state. Model based approaches are 
superior in these environments. 

A popular model based approach is via a Partially Observable Markov Decision Process 
(POMDP) model which represents the decision process of the agent. In Fig.1 the approach 
is described by the route from "World" to "Policy" through "POMDP". The approach has 
two serious difficulties. One is in the learning of POMDPs (arrow b in Fig. I). Abe and 
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Warmuth (1992) shows that learning of probabilistic automata is NP-hard, which means 
that learning of POMDPs is also NP-hard. The other difficulty is in finding the optimal 
policy of a given POMDP model (arrow c in Fig. I ). Its PSAPCE-hardness is shown in 
Papadimitriou and Tsitsiklis (1987). Accordingly, the methods based on this approach 
(Chrisman 1992; McCallum 1993), will not scale well to large problems. 

The approach using short-term memory is computationally more tractable. Of course we 
can construct environments in which long-term memory is essential. However, in many 
environments, because of their stochasticity, the significance of the past information de­
creases exponentially fast as the time goes. In such environments, memories of moderate 
length will work fine. 

McCallum (1995) proposes "utile suffix memory" (USM) algorithm. USM uses a tree 
structure to represent short-term memories with variable length. USM's model learning is 
based on a statistical test, which requires time and space proportional to the learning steps. 
This makes it difficult to adapt USM to the environments which require long learning steps. 
USM suffers from the overfitting problem which is a difficult problem faced by most of 
model based learning methods. USM may overfit or underfit up to the significance level 
used for the statistical test and we can not know its proper level in advance. 

In this paper, we introduce an algorithm called BLHT (Suematsu et al. 1997), in which the 
environment is modeled as a history tree model (HTM), a stochastic model with variable 
memory length. Although BLHT shares the tree structured representation of short-term 
memory with USM, the computational time required by BLHT is constant in each step and 
BLHT copes with environments which require large learning steps. In addition, because 
BLHT is based on Bayesian Learning, the overfitting problem is solved reasonably in it. A 
similar version of HTMs was introduced and has been used for learning of Hidden Markov 
Models in Ron et at. (1994). In their learning method, a tree is grown in a similar way with 
USM. If we try to adapt it to our RL problem, it will face the same problems with USM. 

This paper shows that the HTM learned by BLHT converges to the optimal one in the 
sense that it provides the most accurate predictions of percepts and rewards, given short­
term memory. BLHT can learn a HTM in an efficient way (arrow d in Fig. l). And since 
HTMs compose a subset of Markov Decision Processes (MDPs), it can be efficiently solved 
by Dynamic Programming (DP) techniques (arrow e in Fig. I). So, we can see BLHT as an 
approach to follow an easy way from "World" to "Policy" which goes around "POMDP". 

2 THE POMDP MODEL 

The decision process of an agent in a partially observable environment can be formulated 
as a POMDP. Let the finite set of states of the environment be S, the finite set of agent's 
actions be A, and the finite set of all possible percepts be I. Let us denote the probability 
of and the reward for making transition from state 8 to 8' using action a by Ps' lsa and W sas' 
respectively. We also denote the probability of obtaining percept i after a transition from 8 

to 8' using action a by 0ilsas" Then, a POMDP model is specified by (S, A,I, P, 0, W, 
xo), where P = {Ps/l sa 18,8' E S,a E A}, 0 = {oilsas,18,8' E S,a E A,i E I}, W 
= {Wsas,18, 8' E S, a E A}, and Xo = (X~l" .. , x~ I SI_l) is the probability distribution of 
the initial state. 

We denote the history of actions and percepts of the agent till time t, ( ... , at-2, it-I, at-I, 

it) by Dt . If the POMDP model, M = (S, A,I, P, 0, W, Xi) is given, one can compute 
the belief state, Xt = (X~l"'" x~ISI_l) from Df, which is the state estimation at time t . 
We denote the mapping from histories to belief states defined by POMDP model M by 
X M( .), that is, Xt = X M(Dt). The belief state Xt is the most precise state estimation 
and it is known to be the sufficient statistics for the optimal policy in POMDPs (Bertsekas 
1987). It is also known that the stochastic process {Xt, t 2:: O} is an MDP in the continuous 
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3 BAYESIAN LEARNING OF HISTORY TREE MODELS (BLHT) 

In this section. we summarize our RL algorithm for partially observable environments. 
which we call BLHT (Suematsu et at. 1997). 

3.1 HISTORY TREE MODELS 

BLHT is Bayesian Learning on a hypothesis space which is composed of predictive models. 
which we call History Tree Models (HTMs). Given short-term memory. a HTM provides 
the probability disctribution of the next percept and the expected immediate reward for 
each action. A HTM is represented by a tree structure called a history tree and parameters 
given for each leaf of the tree. 

A history tree h associates history D t with a leaf as follows. Starting from the root of h. 
we check the most recent percept. it and follow the appropriate branch and then we check 
the action at-l and follow the appropriate branch. This procedure is repeated till we reach 
a leaf. We denote the reached leaf by Ah(Dt ) and the set of leaves of h by Lh. 

Each leaf l E Lh has parameters Billa and Wla. Billa denotes the probability of observing 
i at time t + 1 when Ah(Dt} = l and the last action at was a. Wla denotes the expected 
immediate reward for performing a when Ah(Dt ) = l. Let 8 h = {Billa liE T, l E 
Lh,a E A}. 

(a) b (b) ~ 1 2 f-~ ---- it 
/'-.... 

a b f-~ --- at-l 

a/"-.. ............... 
---"--../--..-- 1 2 1 2 ~ it-l 

Figure 2: (a) A three-state environment. in which the agent receives percept 1 in state 1 and 
percept 2 in states 2a and 2b. (b) A history tree which can represent the environment. 

Fig. 2 shows a three-state environment (a) and a history tree which can represent the 
environment (b). We can construct a HTM which is equivalent with the environment by 
setting appropriate parameters in each leaf of the history tree. 

3.2 BAYESIAN LEARNING 

BLHT is designed as Bayesian Learning on the hypothesis space. 11.. which is a set of 
history trees. First we show the posterior probability of a history tree h E 11. given history 
D t . To derive the posterior probability we set the prior density of 8h as 

p(8h lh) = II II Kia II B~:~a-l, 
IELh aEA iEI 

where Kia is the normalization constant and ailla is a hyper parameter to specify the prior 
density. Then we can have the posterior probabili,ty of h. 

n· I r(N~1 + a'll ) 
P(hID 11.) = P(hI1l.) II II K ,E , la ~ a (I) 

t, Ct la r(Nt + a) , 
IELh aEA la la 

where Ct is the normalization constant. r(·) is the gamma function. Nflla is the number 

of times i is observed after executing a when Ah(Dt,) = l in the history Dt • N/ = 
"t " a L.JiEI N illa • and ala = L.JiEI ailla' 

Next. we show the estimates of the parameters. We use the average of Billa with its posterior 
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density as the estimate, 8~lla' which is expressed as 

~t Nflla + ailla 
()"II = -'-;---­
taN/a + a'a . 

W'a is estimated just by accumulating rewards received after executing a when Ah(Dt ) = l, 
and dividing it by the number of times a was performed when Ah (Dt ) = l, N/a • That is, 

1 N/'a 

wIa = Nt L Ttk+1, 
la k=l 

where tk is the k-th occurrence of execution of a when Ah(Dt ) = l. 

3.3 LEARNING ALGORITHM 

In principle, by evaluating Eq.( J) for all h E 11., we can extract the MAP model. However, 
it is often impractical, because a proper hypothesis space 11. is very large when the agent has 
little prior knowledge concerning the environment. Fortunately, we can design an efficient 
learning algorithm by assuming that the hypothesis space, 11., is the set of pruned trees of a 
large history tree h1i and the ratio of prior probabilities of a history tree h and hi obtained 
by pruning off subtree Llh from h is given by a known function q( Llh) I . 

We define function g(hIDt,1I.) by taking logarithm of the R.H.S. of Eq.(J) without the 
normalization constant, which can be rewritten as 

g(hIDt,1I.) = log P(hI1l.) + L At, (2) 
IEC h 

where 

At = ""'1 [K ItEI r(Nfl/a + a i ll a)] 
I ~ og la reNt +). (3) 

aEA la ala 

Then, we can extract the MAP model by finding the history tree which maximizes g. Eq.(2) 
shows that g(hIDt, 11.) can be evaluated by summing up At over Lh. Accordingly, we can 
implement an efficient algorithm using the tree h1i whose each (internal or leaf) node 1 
stores AI, N i l/a , ail/a, and Wla· 

Suppose that the agent observed it+l when the last action was at. Then, from Eq.(3), 

At+l - I og N' +0</ .' { 
At + I Nt,tl l/ a , +o<;,tll/ a , cor lEND, 

I - la, a, 
AI otherwise 

(4) 

where N D, is the set of nodes on the path from the root to leaf Ah~ (Dt ). Thus, h1i is 
updated just by evaluating Eq(4), adding I to Nil /a ' and recalculating Wla in nodes of ND ,. 

After h1i is updated, we can extract the MAP model using the procedure "Find-MAP­
Subtree" shown in Fig. 3(a). We show the learning algorithm in Fig.3(b), in which the 
MAP model is extracted and policy 7r is updated only when a given condition is satisfied. 

4 LIMIT THEOREMS 

In this section, we describe limit theorems of BLHT. Throughout the section, we assume 
that policy 7r is used while learning and the stochastic process {(st, at, it+d, t ~ O} is 
ergodic under 7r • 

First we show a theorem which ensures that the history tree model learned by BLHT does 
not miss any relevant memories (see Suematsu et al. (1997) for the proof). 

I The condition is satisfied, for example, when P(hl1i) ex ")'Ikl where 0 < ")' ~ 1 and Ihl denotes 
the size of h. 
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10 - - u tree no e Mam-Loop(condltlOn C) 
I: hf- .Af-O I: t f- O. D t f- () 
2: C f- {all child nodes of node l} 
3: if ICI = 0 then return {l, Ad 

2: rr f- "policy selecting action at random" 
3: at f- rr(Dt) or exploratory action 

4: for each c E C do 
5: {Llhc, Ac} f- Find-MAP-Subtree( c) 
6: Llh f- Llh U Llhc 
7: A f- A+ Ac 
8: end 
9: Llg f-logq(Llh) + A - Al 

10: if Llg > 0 then return {Llh, A} 
11: else return l, Al 

(a) 

4: perform at and receive it+l and rt+l 
5: update hll. 
6: if (condition C is satisfied) do 
7: h f- Find-MAP-Subtree(Root(hll» 
8: rr f- Dynamic-Programming(h) 
9: end 

10: Dt+l f- (Dt ,at,it+l), t f- t + 1 
II: goto 3 

(b) 

Figure 3: The procedure to find MAP subtree (a) and the main loop (b). 

Theorem 1 For any h E 11.. 

lim !g(hIDt ,11.) = -Hh(IIL, A), 
t-too t 

where Hh(IIL, A) is the conditional entropy ofit+1 given It = Ah(Dt ) and at defined by 

Hh(IIL,A) == Err {z: -Prr (it+l = i I lt,at)logPrr (it+1 = i Ilt,at)}, 
iEI 

where Prr (.) and Err (.) denotes probability and expected value under 7r respectively. 

Let the history tree shown in Fig.2(b) be h* and a history tree obtained by pruning a subtree 
of h* be h-. Then, for the environment shown in Fig.2(a) Hh- (IlL, A) > Hh• (IlL, A), 
because h - misses some relevant memories and it makes the conditional entropy increase. 
Since BLHT learns the history tree which maximizes g(hIDt , 11.) (minimizes Hh(IIL , A), 
the learned history tree does not miss any relevant memory. 

Next we show a limit theorem concerning the estimates of the parameters. We denote the 
true POMDP model by M = (S, A, I, P, 0, W, Xi) and define the following parameters, 

O'i lsa P(it+l = i I St = s,at = a) = z: Ps'l saOi lsas' 

s'ES 

J-Lsa = E(rt+ll st = s,at = a) = z: wsas'Ps'lsa' 

s'ES 

Then, the following theorem holds. 

Theorem 2 For any leaf I E Ch, a E A. i E I 

lim w:a = '"' J-LsaY:lla' t-too ~ 
sES 

where Y:lla == Prr(St = SIAh(Dt) = I, at = a). 

Outline of proof: Using the Ergodic Theorem, We have 

lim O!lla = Prr (it+l = ilAh(Dd = I, at = a). 
t-too 

(5) 

(6) 
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By expanding R.H.S of the above equation using the chain rule, we can derive Eq.(5). 
Eq.(6) can be derived in a similar way. • 

To explain what Theorem 2 means clearly, we show the relationship between Y;lla and the 
belief state Xt. 

P7r (St = SIAh(Dd = i, at = a, Xo = Xi) 

L P(St = SIDt = D, at = a, Xo = xi)P7r (Dt = Dlit = i, at = a, Xo = Xi) 
DEDI 

= 1 L :n.D~ (D){ X M(D)}s P7r (Dt = Dlit = i, at = a, Xo = xi)dx 
X DEDI 

I 

Ix XS P7r (Xt = xlit = i, at = a, Xo = xi)dx, 

where Vi == {DtIAh(Dt ) = I}, :n.B(-) is the indicator function of a set B, V~ == 
{DtIX M(Dd = x}, and dx = dXl'" dXISI-l' Under the ergodic assumption, by taking 
limt-too of the above equation, we have 

Yla = Ix xCPia(x)dx (7) 

where Yla = (Y;llla' ... , Y;ISI-I Ila) and CPia (x) = P7r (Xt = xIAh(Dt) = i, at = a). 

We see from Eq.(7) that Yla is the average of belief state Xt with conditional density CPia, 
that is, the belief states distributed according to CPla are represented by Yia' When short­
term memory of i gives the dominant information of Dt. CPia is concentrated and Yla is 
a reasonable approximation of the belief states. An extreme of the case is when CPia is 
non-zero only at a point in X. Then YIa = Xt when Ah(Dd = i. 
Please note that given short-term memory represented by i and a, YIa is the most accurate 
state estimation. Consequently, Theorem 1 and 2 ensure that learned HTM converges to 
the model which provides the most accurate predictions of percepts and rewards among 1/.. 
This fact provides a solid basis for BLHT, and we believe BLHT can be compared favorably 
with other methods using short-term memory. Of course, Theorem 1 and 2 also say that 
BLHT will find the optimal policy if the environment is Markovian or semi-Markovian 
whose order is small enough for the equivalent model to be contained in 1/.. 

5 EXPERIMENT 

We made experiments in various environments. In this paper, we show one of them to 
demonstrate the effectiveness of BLHT. The environment we used is the grid world shown 
in Fig.4(a). The agent has four actions to change its location to one of the four neighboring 
grids, which will fail with probability 0.2. On failure, the agent does not change the location 
with probability 0.1 or goes to one ofthe two grids which are perpendicular to the direction 
the agent is trying to go with probability 0.1. The agent can detect merely the existence of 
the four surrounding walls. The agent receives a reward of 10 when he reaches the goal 
which is the grid marked with "G" and - 1 when he tries to go to a grid occupied by an 
obstacle. At the goal, any action will relocate the agent to one of the starting states which 
are marked with "S" at random. In order to achieve high performance in the environment, 
the agent has to select different actions for an identical immediate percept, because many of 
the states are aliased (i.e. they look identical by the immediate percepts). The environment 
has 50 states, which is among the largest problems shown in the literature of the model 
based RL techniques for partially observable environments. 

Fig.4(b) shows the learning curve which is obtained by averaging over 10 independent runs. 
While learning, the agent updated the policy every 10 trials (10 visits to the goal) and the 
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policy was evaluated through a run of 100,000 steps. Actions were selected using the pol­
icy or at random and the probability of selecting at random was decreased exponentially as 
the time goes. We used the tree which has homogeneous depth of 5 as h1i.. In Fig.4(b), the 
horizontal broken line indicates the average reward for the MOP model obtained by assum­
ing perfect and complete perception. It gives an upper bound for the original problem, and 
it will be higher than the optimal one for the original problem. The learning curve shown 
there is close to the upper bound in the later stage. 

(a) (b) 1 - .- .- .--- --.-.-.. -.---.-.-.. -- .- - - ---.-._-. 

0.8 

0.6 

0.4 

0.2 

o 

2000 4000 6000 8000 10000 
trials 

Figure 4: The grid world (a) and the learning curve (b). 

6 SUMMARY 

This paper has described a RL algorithm for partially observable environments using short­
term memory, which we call BLHT. We have proved that the model learned by BLHT 
converges to the optimal model in given hypothesis space, 1{, which provides the most 
accurate predictions of percepts and rewards, given short-term memory. We believe this 
fact provides a solid basis for BLHT, and BLHT can be compared favorably with other 
methods using short-term memory. 
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