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Abstract 

Sparse coding is a method for finding a representation of data in 
which each of the components of the representation is only rarely 
significantly active. Such a representation is closely related to re­
dundancy reduction and independent component analysis, and has 
some neurophysiological plausibility. In this paper, we show how 
sparse coding can be used for denoising. Using maximum likelihood 
estimation of nongaussian variables corrupted by gaussian noise, we 
show how to apply a shrinkage nonlinearity on the components of 
sparse coding so as to reduce noise. Furthermore, we show how to 
choose the optimal sparse coding basis for denoising. Our method 
is closely related to the method of wavelet shrinkage, but has the 
important benefit over wavelet methods that both the features and 
the shrinkage parameters are estimated directly from the data. 

1 Introduction 

A fundamental problem in neural network research is to find a suitable representa­
tion for the data. One of the simplest methods is to use linear transformations of the 
observed data. Denote by x = (Xl, X2, ... , Xn)T the observed n-dimensional random 
vector that is the input data (e.g., an image window), and by s = (81,82 , . .. , 8 n )T 

the vector of the linearly transformed component variables. Denoting further the 
n x n transformation matrix by W, the linear representation is given by 

s=Wx. (1) 
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We assume here that the number of transformed components equals the number of 
observed variables, but this need not be the case in general. 

An important representation method is given by (linear) sparse coding [1 , 10], in 
which the representation of the form (1) has the property that only a small number 
of the components Si of the representation are significantly non-zero at the same 
time. Equivalently, this means that a given component has a 'sparse' distribution. 
A random variable Si is called sparse when Si has a distribution with a peak at zero, 
and heavy tails, as is the case, for example, with the double exponential (or Laplace) 
distribution [6]; for all practical purposes , sparsity is equivalent to supergaussianity 
or leptokurtosis [8]. Sparse coding is an adaptive method, meaning that the matrix 
W is estimated for a given class of data so that the components Si are as sparse as 
possible; such an estimation procedure is closely related to independent component 
analysis [2J. 

Sparse coding of sensory data has been shown to have advantages from both phys­
iological and information processing viewpoints [1] . However, thorough analyses of 
the utility of such a coding scheme have been few. In this paper, we introduce and 
analyze a statistical method based on sparse coding. Given a signal corrupted by 
additive gaussian noise, we attempt to reduce gaussian noise by soft thresholding 
('shrinkage') of the sparse components. Intuitively, because only a few of the com­
ponents are significantly active in the sparse code of a given data point, one may 
assume that the activities of components with small absolute values are purely noise 
and set them to zero, retaining just a few components with large activities. This 
method is closely connected to the wavelet shrinkage method [3]. In fact, sparse 
coding may be viewed as a principled way for determining a wavelet-like basis and 
the corresponding shrinkage nonlinearities, based on data alone. 

2 Maximum likelihood estimation of sparse components 

The starting point of a rigorous derivation of our denoising method is the fact that 
the distributions of the sparse components are nongaussian. Therefore, we shall 
begin by developing a general theory that shows how to remove gaussian noise from 
nongaussian variables, making minimal assumptions on the data. 

Denote by S the original nongaussian random variable (corresponding here to a 
noise-free version of one of the sparse components Si), and by v gaussian noise of 
zero mean and variance a 2 • Assume that we only observe the random variable y : 

y=S+v (2) 

and we want to estimate the original s. Denoting by p the probability density of s, 
and by f = -logp its negative log-density, the maximum likelihood (ML) method 
gives the following estimator for s: 

§ = argmin ~(y - u)2 + f(u). 
u 2a 

(3) 

Assuming f to be strictly convex and differentiable, this can be solved [6] to yield 
§ = g(y), where the function g can be obtained from the relation 

(4) 

This nonlinear estimator forms the basis of our method. 
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Figure 1: Shrinkage nonlinearities and associated probability densities. Left: Plots 
of the different shrinkage functions. Solid line: shrinkage corresponding to Laplace 
density. Dashed line: typical shrinkage function obtained from (6). Dash-dotted 
line: typical shrinkage function obtained from (8). For comparison, the line x = y is 
given by dotted line. All the densities were normalized to unit variance, and noise 
variance was fixed to .3. Right: Plots of corresponding model densities of the sparse 
components. Solid line: Laplace density. Dashed line: a typical moderately super­
gaussian density given by (5). Dash-dotted line: a typical strongly supergaussian 
density given by (7). For comparison, gaussian density is given by dotted line. 

3 Parameterizations of sparse densities 

To use the estimator defined by (3) in practice, the densities of the Si need to 
be modelled with a parameterization that is rich enough. We have developed two 
parameterizations that seem to describe very well most of the densities encountered 
in image denoising. Moreover, the parameters are easy to estimate, and the inversion 
in (4) can be performed analytically. Both models use two parameters and are thus 
able to model different degrees of supergaussianity, in addition to different scales, 
i.e. variances. The densities are here assumed to be symmetric and of zero mean. 

The first model is suitable for supergaussian densities that are not sparser than the 
Laplace distribution r6], and is given by the family of densities 

p(s) = C exp( -as2 12 - bls!), (5) 

where a, b > 0 are parameters to be estimated, and C is an irrelevant scaling 
constant . The classical Laplace density is obtained when a = 0, and gaussian 
densities correspond to b = o. A simple method for estimating a and b was given 
in [6]. For this density, the nonlinearity g takes the form: 

g(u) = 1 2 sign(u) max(O, lui - ba2 ) (6) 
1 +a a 

where a2 is the noise variance. The effect of the shrinkage function in (6) is to 
reduce the absolute value of its argument by a certain amount, which depends on 
the parameters, and then rescale. Small arguments are thus set to zero. Examples 
of the obtained shrinkage functions are given in Fig. l. 

The second model describes densities that are sparser than the Laplace density: 

1 (a: + 2) [a: (a: + 1)/2](a/Hl) 

p(s) = 2d [Va: (a: + 1)/2 + I sid 1](a+3)· 
(7) 



476 A. Hyvarinen, P Hoyer and E. Dja 

When a -+ 00, the Laplace density is obtained as the limit. A simple consistent 
method for estimating the parameters d, a > 0 in (7) can be obtained from the 
relations d = JE{S2} and a = (2 - k + Jk(k + 4))/(2k - 1) with k = d2Ps(O)2, 
see [6]. The resulting shrinkage function can be obtained as [6] 

lui - ad 1 ,..,---,-----,--::-------:,....,----
g(u) = sign(u)max(O, 2 + "2 J (l u l + ad)2 - 4a2(a + 3)) (8) 

where a = Ja(a + 1)/2, and g(u) is set to zero in case the square root in (8) is 
imaginary. This is a shrinkage function that has a certain hard-thresholding flavor, 
as depicted in Fig. 1. 

Examples of the shapes of the densities given by (5) and (7) are given in Fig. 1, 
together with a Laplace density and a gaussian density. For illustration purposes, 
the densities in the plot are normalized to unit variance, but these parameterizations 
allow the variance to be choosen freely. 

Choosing whether model (5) or (7) should be used can be based on moments of 
the distributions; see [6]. Methods for estimating the noise variance a2 are given in 
[3,6]. 

4 Sparse code shrinkage 

The above results imply the following sparse code shrinkage method for denoising. 
Assume that we observe a noisy version x = x + v of the data x, where v is gaussian 
white noise vector. To denoise x, we transform the data to a sparse code, apply the 
above ML estimation procedure component-wise, and then transform back to the 
original variables. Here, we constrain the transformation to be orthogonal; this is 
motivated in Section 5. To summarize: 

1. First, using a noise-free training set of x, use some sparse coding method 
for determining the orthogonal matrix W so that the components Si in 
s = Wx have as sparse distributions as possible. Estimate a density model 
Pi(Si) for each sparse component, using the models in (5) and (7). 

2. Compute for each noisy observation x(t) of x the corresponding noisy sparse 
components y(t) = Wx(t). Apply the shrinkage non-linearity gi(') as de­
fined in (6), or in (8), on each component Yi(t), for every observation index 
t. Denote the obtained components by Si(t) = gi(Yi(t)). 

3. Invert the relation (1) to obtain estimates of the noise-free x, given by 
x(t) = WT§(t) . 

To estimate the sparsifying transform W, we assume that we have access to a noise­
free realization of the underlying random vector. This assumption is not unrealistic 
on many applications: for example, in image denoising it simply means that we 
can observe noise-free images that are somewhat similar to the noisy image to be 
treated, i.e., they belong to the same environment or context. This assumption can 
be, however, relaxed in many cases, see [7]. The problem of finding an optimal 
sparse code in step 1 is treated in the next section. 
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In fact , it turns out that the shrinkage operation given above is quite similar to 
the one used in the wavelet shrinkage method derived earlier by Donoho et al [3] 
from a very different approach. Their estimator consisted of applying the shrinkage 
operator in (6) , with different values for the parameters, on the coefficients of the 
wavelet transform. There are two main differences between the two methods. The 
first is the choice of the transformation. We choose the transformation using the 
statistical properties of the data at hand, whereas Donoho et al use a predetermined 
wavelet transform. The second important difference is that we estimate the shrink­
age nonlinearities by the ML principle, again adapting to the data at hand, whereas 
Donoho et al use fixed thresholding operators derived by the minimax principle. 

5 Choosing the optimal sparse code 

Different measures of sparseness (or nongaussianity) have been proposed in the lit­
erature [1, 4, 8, 10]. In this section, we show which measures are optimal for our 
method. We shall here restrict ourselves to the class of linear, orthogonal transfor­
mations. This restriction is justified by the fact that orthogonal transformations 
leave the gaussian noise structure intact, which makes the problem more simply 
tractable. This restriction can be relaxed, however, see [7]. 

A simple, yet very attractive principle for choosing the basis for sparse coding is 
to consider the data to be generated by a noisy independent component analysis 
(ICA) model [10, 6, 9] : 

x = As+v, (9) 

where the Si are now the independent components, and v is multivariate gaussian 
noise. We could then estimate A using ordinary maximum likelihood estimation 
of the ICA model. Under the restriction that A is constrained to be orthogonal, 
estimation of the noise-free components Si then amounts to the above method of 
shrinking the values of AT x, see [6]. In this ML sense, the optimal transformation 
matrix is thus given by W = AT. In particular, using this principle means that 
ordinary ICA algorithms can be used to estimate the sparse coding basis. This 
is very fortunate since the computationally efficient methods for ICA estimation 
enable the basis estimation even in spaces of rather high dimensions [8, 5]. 

An alternative principle for determining the optimal sparsifying transformation is 
to minimize the mean-square error (MSE). In [6], a theorem is given that shows that 
the optimal basis in minimum MSE sense is obtained by maximizing 2:~=1 IF(wTx) 
where IF(s) = E{[P'(s)jp(s)J2} is the Fisher information of the density of s, and 
the wT are the rows of W . Fisher information of a density [4] can be considered as 
a measure of its nongaussianity. It is well-known [4] that in the set of probability 
densities of unit variance, Fisher information is minimized by the gaussian density, 
and the minimum equals 1. Thus the theorem shows that the more nongaussian 
(sparse) S is, the better we can reduce noise. Note, however, that Fisher information 
is not scale-invariant. 

The former (ML) method of determining the basis matrix gives usually sparser 
components than the latter method based on minimizing MSE. In the case of image 
denoising, however, these two methods give essentially equivalent bases if a percep­
tually weighted MSE is used [6]. Thus we luckily avoid the classical dilemma of 
choosing between these two optimality criteria. 
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6 Experiments 

Image data seems to fulfill the assumptions inherent in sparse code shrinkage: It is 
possible to find linear representations whose components have sparse distributions, 
using wavelet-like filters [10]. Thus we performed a set of experiments to explore the 
utility of sparse code shrinkage in image denoising. The experiments are reported 
in more detail in [7]. 

Data. The data consisted of real-life images, mainly natural scenes. The images 
were randomly divided into two sets. The first set was used in estimating the 
matrix W that gives the sparse coding transformation, as well as in estimating the 
shrinkage nonlinearities. The second set was used as a test set. It was artificially 
corrupted by Gaussian noise, and sparse code shrinkage was used to reduce the 
noise. The images were used in the method in the form of subwindows of 8 x 8 
pixels. 

Methods. The sparse coding matrix W was determined by first estimating the 
ICA model for the image windows (with DC component removed) using the FastICA 
algorithm [8, 5], and projecting the obtained estimate on the space of orthogonal 
matrices. The training images were also used to estimate the parametric density 
models of the sparse components. In the first series of experiments, the local vari­
ance was equalized as a preprocessing step [7]. This implied that the density in 
(5) was a more suitable model for the densities of the sparse components; thus the 
shrinkage function in (6) was used. In the second series, no such equalization was 
made, and the density model (7) and the shrinkage function (8) were used [7]. 

Results. Fig. 2 shows, on the left, a test image which was artificially corrupted 
with Gaussian noise with standard deviation 0.5 (the standard deviations of the 
original images were normalized to 1). The result of applying our denoising method 
(without local variance equalization) on that image is shown on the right. Visual 
comparison of the images in Fig. 2 shows that our sparse code shrinkage method 
cancels noise quite effectively. One sees that contours and other sharp details are 
conserved quite well, while the overall reduction of noise is quite strong, which in 
is contrast to methods based on low-pass filtering. This result is in line with those 
obtained by wavelet shrinkage [3]. More experimental results are given in [7]. 

7 Conclusion 

Sparse coding and ICA can be applied for image feature extraction, resulting in a 
wavelet-like basis for image windows [10]. As a practical application of such a basis, 
we introduced the method of sparse code shrinkage. It is based on the fact that in 
sparse coding the energy of the signal is concentrated on only a few components, 
which are different for each observed vector. By shrinking the absolute values of the 
sparse components towards zero, noise can be reduced. The method is also closely 
connected to modeling image data with noisy independent component analysis [9]. 
We showed how to find the optimal sparse coding basis for denoising, and we de­
veloped families of probability densities that allow the shrinkage nonlinearities to 
adapt accurately to the data at hand. Experiments on image data showed that the 
performance of the method is very appealing. The method reduces noise without 
blurring edges or other sharp features as much as linear low-pass or median filtering. 
This is made possible by the strongly non-linear nature of the shrinkage operator 
that takes advantage of the inherent statistical structure of natural images. 


