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Abstract 

Information from the senses must be compressed into the limited range 
of firing rates generated by spiking nerve cells. Optimal compression 
uses all firing rates equally often, implying that the nerve cell's response 
matches the statistics of naturally occurring stimuli. Since changing 
the voltage-dependent ionic conductances in the cell membrane alters 
the flow of information, an unsupervised, non-Hebbian, developmental 
learning rule is derived to adapt the conductances in Hodgkin-Huxley 
model neurons. By maximizing the rate of information transmission, 
each firing rate within the model neuron's limited dynamic range is used 
equally often . 

An efficient neuronal representation of incoming sensory information should take advan­
tage of the regularity and scale invariance of stimulus features in the natural world. In 
the case of vision, this regularity is reflected in the typical probabilities of encountering 
particular visual contrasts, spatial orientations, or colors [1]. Given these probabilities, an 
optimized neural code would eliminate any redundancy, while devoting increased repre­
sentation to commonly encountered features. 

At the level of a single spiking neuron, information about a potentially large range of stimuli 
is compressed into a finite range of firing rates , since the maximum firing rate of a neuron is 
limited. Optimizing the information transmission through a single neuron in the presence 
of uniform, additive noise has an intuitive interpretation: the most efficient representation 
of the input uses every firing rate with equal probability. An analogous principle for non­
spiking neurons has been tested experimentally by Laughlin [2], who matched the statistics 
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Figure 1: The model neuron contains two compartments to represent the cell's soma and 
dendrites. To maximize the information transfer, the parameters for six calcium and six 
potassium voltage-dependent conductances in the dendritic compartment are iteratively ad­
justed, while the somatic conductances responsible for the cell's spiking behavior are held 
fixed. 

of naturally occurring visual contrasts to the response amplitudes of the blowfly'S large 
monopolar cell. 

From a theoretical perspective, the central question is whether a neuron can "learn" the 
best representation for natural stimuli through experience. During neuronal development, 
the nature and frequency of incoming stimuli are known to change both the anatomical 
structure of neurons and the distribution of ionic conductances throughout the cell [3]. We 
seek a guiding principle that governs the developmental timecourse of the Na+, Ca2+ and 
K+ conductances in the somatic and dendritic membrane by asking how a neuron would 
set its conductances to transmit as much information as possible. Spiking neurons must 
associate a range of different inputs to a set of distinct responses-a more difficult task than 
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keeping the firing rate or excitatory postsynaptic potential (EPSP) amplitude constant under 
changing conditions, two tasks for which learning rules that change the voltage-dependent 
conductances have recently been proposed [4, 5] . Learning the proper representation of 
stimulus information goes beyond simply correlating input and output; an alternative to the 
classic postulate of Hebb [6], in which synaptic learning in networks is a consequence of 
correlated activity between pre- and postsynaptic neurons, is required for such learning in 
a single neuron. 

To explore the feasibility of learning rules for information maximization, a simplified 
model of a neuron consisting of two electrotonic compartments, illustrated in fig. 1, was 
constructed. The soma (or cell body) contains the classic Hodgkin-Huxley sodium and 
delayed rectifier potassium conductances, with the addition of a transient potassium "A­
"current and an effective calcium-dependent potassium current. The soma is coupled 
through an effective conductance G to the dendritic compartment, which contains the 
synaptic input conductance and three adjustable calcium and three adjustable potassium 
conductances. 

The dynamics of this model are given by Hodgkin-Huxley-like equations that govern the 
membrane potential and a set of activation and inactivation variables, mi and hi , respec­
tively. In each compartment of the neuron, the voltage V evolves as 

C dV - """ Pi hqi (E ) ill - ~ gi m i i i-V' (1) 
i 

where C is the membrane capacitance, gi is the (peak) value of the i-th conductance, Pi and 
qi are integers, and Ei are the ion-specific reversal potentials. The variables hi and mi obey 
first order kinetics of the type dm/dt = (moo (V) - m) /T(V), where moo (V) denotes the 
steady state activation when the voltage is clamped to V and T(V) is a voltage-dependent 
time constant. 

All parameters for the somatic compartment, with the exception of the adaptation con­
ductance, are given by the standard model of Connor et al (1977) [7], This choice of 
somatic spiking conductances allows spiking to occur at arbitrarily low firing rates. Adap­
tation is modeled by a calcium-dependent potassium conductance that scales with the fir­
ing rate, such that the conductance has a mean value of 34 mS/cm2 Hz. The calcium 
and potassium conductances in the dendritic compartment have simple activation and in­
activation functions described by distinct Boltzmann functions. Together with the peak 
conductance values, the midpoint voltages VI and slopes s of these Boltzmann functions 
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adapt to the statistics of stimuli. For simplicity, all time constants for the dendritic con-
ductances are set to a constant 5 msec. For additional details and parameter values, see 
http://www.klab.caltech.edu/infomax. 

Hodgkin-Huxley models can exhibit complex behaviors on several timescales, such as fir­
ing patterns consisting of "bursts"-sequences of multiple spikes interspersed with periods 
of silence. We will, however, focus on models of regularly spiking cells that adapt to 
a sustained stimulus by spiking periodically. To quantify how much information about a 
continuous stimulus variable x the time-averaged firing rate f of a regularly spiking neuron 
carries, we use a lower bound [8] on the mutual information J(f; x) between the stimulus 
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x and the firing rate f: 

hB(J; x) = -jIn (p(J) CTf(X)) p(x) dx -In(J27re), (2) 

where p(J) is the probability, given the set of all stimuli, of a firing rate f, and CTJ (x) is the 
variance of the firing rate in response to a given stimulus x. 

To maximize the information transfer, does a neuron need to "know" the arrival rates of 
photons impinging on the retina or the frequencies of sound waves hitting the ear's tym­
panic membrane? Since the ion channels in the dendrites only sense a voltage and not the 
stimulus directly, the answer to this question, fortunately, is no: maximizing the informa­
tion between the firing rate f and the dendritic voltage Vdend(t) is equivalent to maximizing 
the information about the stimuli, as long as we can guarantee that the transformation from 
stimuli to firing rates is always one-to-one. 

Since a neuron must be able to adapt to a changing environment and shifting intra- and 
extracellular conditions [4], learning and relearning of the proper conductance parameters, 
such as the channel densities, should occur on a continual basis. An alphabet zoo of dif­
ferent calcium (Ca2+) conductances in neurons of the central nervous system, denoted 'L', 
'N', 'P', 'R', and 'T' -conductances, reflects a wealth of different voltage and pharmacolog­
ical properties [9], matching an equal diversity of potassium (K+) channels. No fewer than 
ten different genes code for various Ca2+ subunits, allowing for a combinatorial number 
of functionally different channels [10]. A self-regulating neuron should be able to express 
different ionic channels and insert them into the membrane. In information maximization, 
the parameters for each of the conductances, such as the number of channels, are continu­
ally modified in the direction that most increases the mutual information 1[1; Vdend (t)] each 
time a stimulus occurs. 

The standard approach to such a problem is known as stochastic approximation of the 
mutual information, which was recently applied to feedforward neural networks for blind 
source sound separation by Bell and Sejnowski [11]. We define a "free energy" :F = 
E(J) - (3-1 hB(J;X), where E(J) incorporates constraints on the peak or mean firing 
rate f, and (3 is a Lagrangean parameter that balances the mutual information and con­
straint satisfaction. Stochastic approximation then consists of adjusting the parameter r of 
a voltage-dependent conductance by 

(3) 

whenever a stimulus x is presented; this will, by definition, occur with probability p(x). 
In the model, the stimuli are taken to be maintained synaptic input conductances 9syn last­
ing 200 msec and drawn randomly from a fixed, continuous probability distribution. Af­
ter an initial transient, we assume that the voltage waveform Vdend(t) settles into a sim­
ple periodic limit cycle as dictated by the somatic spiking conductances. We thus posit 
the existence of the invertible composition of maps, such that the input conductance 9syn 

maps onto a periodic voltage waveform Vdend(t) of period T, from thence onto an aver-

aged current (1) = liT J: 1(t) dt to the soma, and then finally onto an output firing rate 
f. The last element in this chain of transformations, the steady-state current-discharge 
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Figure 2: The inputs to the model are synaptic conductances, drawn randomly from a 
Gaussian distribution of mean 141 nS and standard deviation of 25 nS with the re­
striction that the conductance be non-negative (dot-dashed line). The learning rule in 
eq. 4-maximizing the information in the cell 's firing rate-was used to adjust the peak 
conductances, midpoint voltages, and slopes of the "dendritic" Ca2+ and K+ conduc­
tances over the course of 10.9 (simulated) minutes .. The learning rate decayed with time: 
71(t) = 710 exp( -t/Tlearning) , with 710 = 4.3 X 10- 3 and Tlearning = 4.4 sec. The optimal firing 
rate response curve (dotted line) is asymptotically proportional to the cumulative probabil­
ity distribution of inputs. The inset illustrates the typical timecourse of the dendritic 
voltage in the trained model. 

relationship at the soma, can be predicted from the theory of dynamical systems (see 
http://www.klab.caltech.edu/'''stemmler for details). 

The voltage and the conductances are nonlinearly coupled: the conductances affect the 
voltage, which, in turn, sets the conductances. Since the mutual information is a global 
property of the stimulus set, the learning rule for anyone conductance would depend on the 
values of all other conductances, were it not for the nonlinear feedback loop between volt­
ages and conductances. This nonlinear coupling must satisfy the strict physical constraint 
of charge conservation : when the neuron is firing periodically, the average current injected 
by the synaptic and voltage-dependent conductances must equal the average current dis­
charged by the neuron . Remarkably, charge conservation results in a learning mechanism 
that is strictly local, so that the mechanism for changing one conductance does not depend 
on the values of any other conductances. 

For instance, information maximization predicts that the peak calcium or potassium con­
ductance 9i changes by 

each time a stimulus is presented. Here 71(t) is a time-dependent learning rate, the angular 
brackets indicate an average over the stimulus duration, and c( (Vdend)) is a simple function 
that is zero for most commonly encountered voltages, equal to a positive constant below 
some minimum, and equal to a negative constant above some maximum voltage. This 
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Figure 3: The probability distribution of firing rates before and after adaptation of voltage­
dependent conductances. Learning shifts the distribution from a peaked distribution to a 
much flatter one, so that the neuron uses each firing rate within the range [22 , 59] Hz equally 
often in response to randomly selected synaptic inputs. 

function represents the constraint on the maximum and minimum firing rate, which sets 
the limit on the neuron's dynamic range. A constraint on the mean firing rate implies 
that c( (Vdend)) is simply a negative constant for all suprathreshold voltages. Under this 
constraint, the optimal distribution of firing rates becomes exponential (not shown). This 
latter case corresponds to transmitting as much information as possible in the rate while 
firing as little as possible. 

Given a stimulus x, the dominant term 8/8V(t) (mihi(Ej - V)) of eq. 4 changes those 
conductances that increase the slope of the firing rate response to x . A higher slope means 
that more of the neuron 's limited range of firing rates is devoted to representing the stimulus 
x and its immediate neighborhood. Since the learning rule is democratic yet competitive, 
only the most frequent inputs "win" and thereby gain the largest representation in the output 
firing rate. 

In Fig. 2, the learning rule of eq . 4-generalized to also change the midpoint voltage and 
steepness of the activation and inactivation functions-has been used to train the model 
neuron as it responds to random, 200 msec long amplitude modulations of a synaptic input 
conductance to the dendritic compartment. The cell "learns" the statistical structure of the 
input, matching its adapted firing rate to the cumulative distribution function of the con­
ductance inputs. The distribution of firing rates shifts from a peaked distribution to a much 
flatter one, so that all firing rates are used nearly equally often (Fig. 3). The information 
in the firing rate increases by a factor of three to 10.7 bits/sec, as estimated by adding a 
5 msec, Gaussian-distributed noise jitter to the spike times. 

Changing how tightly the stimulus amplitudes are clustered around the mean will increase 
or decrease the slope of the firing rate response to input, without necessarily changing 
the average firing rate. Neuronal systems are known to adapt not only to the mean of 
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the stimulus intensity, but also to the variance of the stimulus [12]. We predict that such 
adaptation to stimulus variance will occur not just at the level of networks of neurons, but 
also at the single cell level. 

While the detailed substrate for maximizing the information at both the single cell and 
network level awaits experimental elucidation, the terms in the learning rule of eq. 4 have 
simple biophysical correlates: the derivative term, for instance, is reflected in the stochastic 
flicker of ion channels switching between open and closed states. The transitions between 
simple open and closed states will occur at a rate proportional to (8/ 8V (m(V))) 'Y in equi­
librium, where the exponent I is 1/2 or 1, depending on the kinetic model. To change 
the information transfer properties of the cell, a neuron could use state-dependent phos­
phorylation of ion channels or gene expression of particular ion channel subunits, possibly 
mediated by G-protein initiated second messenger cascades, to modify the properties of 
voltage-dependent conductances. The tools required to adaptively compress information 
from the senses are thus available at the subcellular level. 
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