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We examine the statistics of natural monochromatic images decomposed 
using a multi-scale wavelet basis. Although the coefficients of this rep­
resentation are nearly decorrelated, they exhibit important higher-order 
statistical dependencies that cannot be eliminated with purely linear pro­
c~ssing. In particular, rectified coefficients corresponding to basis func­
tions at neighboring spatial positions, orientations and scales are highly 
correlated. A method of removing these dependencies is to divide each 
coefficient by a weighted combination of its rectified neighbors. Sev­
eral successful models of the steady -state behavior of neurons in primary 
visual cortex are based on such "divisive normalization" computations, 
and thus our analysis provides a theoretical justification for these models. 
Perhaps more importantly, the statistical measurements explicitly specify 
the weights that should be used in computing the normalization signal. 
We demonstrate that this weighting is qualitatively consistent with re­
cent physiological experiments that characterize the suppressive effect 
of stimuli presented outside of the classical receptive field. Our obser­
vations thus provide evidence for the hypothesis that early visual neural 
processing is well matched to these statistical properties of images. 

An appealing hypothesis for neural processing states that sensory systems develop in re­
sponse to the statistical properties of the signals to which they are exposed [e.g., 1, 2]. 
This has led many researchers to look for a means of deriving a model of cortical process­
ing purely from a statistical characterization of sensory signals. In particular, many such 
attempts are based on the notion that neural responses should be statistically independent. 

The pixels of digitized natural images are highly redundant, but one can always find a 
linear decomposition (i.e., principal component analysis) that eliminates second-order cor-
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relation. A number of researchers have used such concepts to derive linear receptive fields 
similar to those determined from physiological measurements [e.g., 16,20]. The principal 
components decomposition is, however, not unique. Because of this, these early attempts 
required additional constraints, such as spatial locality and/or symmetry, in order to achieve 
functions approximating cortical receptive fields. 

More recently, a number of authors have shown that one may use higher-order statisti­
cal measurements to uniquely constrain the choice of linear decomposition [e.g., 7, 9]. 
This is commonly known as independent components analysis. Vision researchers have 
demonstrated that the resulting basis functions are similar to cortical receptive fields, in 
that they are localized in spatial position, orientation and scale [e.g., 17, 3]. The associ­
ated coefficients of such decompositions are (second-order) decorrelated, highly kurtotic, 
and generally more independent than principal components. 

But the response properties of neurons in primary visual cortex are not adequately described 
by linear processes. Even if one chooses to describe only the mean firing rate of such 
neurons, one must at a minimum include a rectifying, saturating nonlinearity. A number of 
authors have shown that a gain control mechanism, known as divisive normalization, can 
explain a wide variety of the nonlinear behaviors of these neurons [18, 4, II, 12,6]. In most 
instantiations of normalization, the response of each linear basis function is rectified (and 
typically squared) and then divided by a uniformly weighted sum of the rectified responses 
of all other neurons. PhYSiologically, this is hypothesized to occur via feedback shunting 
inhibitory mechanisms [e.g., 13, 5]. Ruderman and Bialek [19] have discussed divisive 
normalization as a means of increasing entropy. 

In this paper, we examine the joint statistics of coefficients of an orthonormal wavelet im­
age decomposition that approximates the independent components of natural images. We 
show that the coefficients are second-order decorrelated, but not independent. In partic­
ular, pairs of rectified responses are highly correlated. These pairwise dependencies may 
be eliminated by dividing each coefficient by a weighted combination of the rectified re­
sponses of other neurons, with the weighting determined from image statistics. We show 
that the resulting model, with all parameters determined from the statistics of a set of im­
ages, can account for recent physiological observations regarding suppression of cortical 
responses by stimuli presented outside the classical receptive field. These concepts have 
been previously presented in [21, 25]. 

1 Joint Statistics of Orthonormal Wavelet Coefficients 

Multi-scale linear transforms such as wavelets have become popular for image representa­
tion. 'TYpically, the basis functions of these representations are localized in spatial position, 
orientation, and spatial frequency (scale). The coefficients resulting from projection of 
natural images onto these functions are essentially uncorrelated. In addition, a number 
of authors have noted that wavelet coefficients have significantly non-Gaussian marginal 
statistics [e.g., 10,14]. Because of these properties, we believe that wavelet bases provide 
a close approximation to the independent components decomposition for natural images. 
For the purposes of this paper, we utilize a typical separable decomposition, based on 
symmetric quadrature mirror filters taken from [23]. The decomposition is constructed by 
splitting an image into four subbands (lowpass, vertical, horizontal, diagonal), and then 
recursively splitting the lowpass subband. 

Despite the decorrelation properties of the wavelet decomposition, it is quite evident that 
wavelet coefficients are not statistically independent [26, 22]. Large-magnitude coefficients 
(either positive or negative) tend to lie along ridges with orientation matching that of the 
subband. Large-magnitude coefficients also tend to occur at the same relative spatialloca­
tions in subbands at adjacent scales, and orientations. To make these statistical relationships 


