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Abstract 

Humans demonstrate a remarkable ability to generate accurate and 
appropriate motor behavior under many different and oftpn uncprtain 
environmental conditions. This paper describes a new modular ap­
proach to human motor learning and control, baspd on multiple pairs of 
inverse (controller) and forward (prpdictor) models. This architecture 
simultaneously learns the multiple inverse models necessary for control 
as well as how to select the inverse models appropriate for a given em'i­
ronm0nt. Simulations of object manipulation demonstrates the ability 
to learn mUltiple objects, appropriate generalization to novel objects 
and the inappropriate activation of motor programs based on visual 
cues, followed by on-line correction, seen in the "size-weight illusion". 

1 Introduction 

Given the multitude of contexts within which we must act, there are two qualitatively 
distinct strategies to motor control and learning. The first is to uSP a Single controller 
which would need to be highly complex to allow for all possible scenarios. If this 
controller were unable to encapsulate all the contexts it would need to adapt pvery 
time the context of the movement changed before it could produce appropriate motor 
commands- -this would produce transient and possibly large performancp errors . Al­
ternatively, a modular approach can be used in which multiple controllers co-exist, with 
each controller suitable for onp or a small set of contexts. Such a modular strategy' has 
been introduced in the "mixture of experts" architecture for supervised learning [6]. 
This architecture comprises a set of expert networks and a gating network which per­
forms classification by combining each expert's output. These networks are trained 
simultaneously so that the gating network splits the input spacp into regions in which 
particular experts can specialize. 

To apply such a modular strategy to motor control two problems must bp solved. First 
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how are the set of inverse models (controllers) learned to cover the contexts which 
might be experienced the module learning problem. Second, given a set of inverse 
modules (controllers) how are the correct subset selected for the current context -­
the module selection problem. From human psychophysical data we know that such 
a selection process must be driven by two distinct processes; feedforward switching 
based on sensory signals such as the perceived size of an object, and switching based 
on feedback of the outcome of a movement . For example, on picking up a object 
which appears heavy, feedforward switching may activate controllers responsible for 
generating a large motor impulse. However, feedback processes, based on contact with 
the object, can indicate that it is in fact light thereby switching control to inverse 
models appropriate for a light object. 

In the coutext of motor control and learning, Gomi and Kawato [4J combined the 
feedback-error-learning [7J approach and the mixture of experts architecture to learn 
multiple inverse models for different manipulated objects. They used both the visual 
shapes of the manipulated objects and intrinsic signals, such as somatosensory feedback 
and efference copy of the motor command, as the inputs to the gating network. Using 
this architecture it was quite difficult to acquire multiple inverse models. This difficulty 
arose because a single gating network needed to divide up, based solely on control error, 
the large input space into complex regions. Furthermore, Gomi and Kawato's model 
could not demonstrate feedforward controller selection prior to movement execution. 

Here we describe a model of human motor control which addresses these problems and 
can solve the module learning and selection problems in a computationally coherent 
manner. The basic idea of the model is that the brain contains multiple pairs (mod­
ules) of forward (predictor) and inverse (controller) models (~fPFIM) [10J. Within each 
module, the forward and inverse models are tightly coupled both during their acquisi­
tion and use, in which the forward models determine the contribution (responsibility) 
of each inverse model 's output to the final motor command. This architecture can 
simultaneously learn the mult.iple inverse models necessary for control as well as how 
to select the inverse models appropriate for a given environment in both a feedforward 
and a feedback manner. 

2 Multiple paired forward-inverse models 
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Figure 1: A schematic diagram showing how MPFIM architecture is used to control 
arm movement while manipulating different objects. Parenthesized numbers in the 
figure relate to the equations in the text. 
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2.1 Motor learning and feedback selection 

Figure 1 illustrates how the MPFIM architecture can be used to learn and control 
arm movements when the hand manipulates different objects. Central to the multiple 
paired forward-inverse model is the notion of dividing up experience using predictive 
forward models. We consider n undifferentiated forward models which each receive the 
current state, Xl, and motor command, Ut, as input . The output of the ith forward 
model is xl+!, the prediction of the next state at time t 

(1) 

where wI are the parameters of a function approximator ¢ (e.g. neural network weights) 
used to model the forward dynamics . These predicted next states are compared to the 
actual next state to provide the responsibility signal which represents the extent to 
which each forward model presently accounts for the behavior of the system. Based on 
the prediction errors of the forward models, the responsibility signal, AL for the i-th 
forward-inverse model pair (module) is calculated by the soft-max function 

(2) 

where X, is the true state of the system and a is a scaling constant. The soft-max 
transforms the errors using the exponential function and then normalizes these values 
across the modules, so that the responsibilities lie between 0 and 1 and sum to lover 
the modules. Those forward models which capture the current behavior, and therefore 
produce small prediction errors, will have high responsibilities 1. The responsibilities 
are then used to control the learning of the forward models in a competitive manner, 
with those models with high responsibilities receiving proportionally more of their error 
signal than modules \vith low responsibility. The competitive learning among forward 
models is similar in spirit to "annealed competition of experts" architecture [9]. 

'" i d d¢z Ai) dil \/( Ai 
....JoW, = f/l l -d . (XI - X, = f-d ./1, Xt - Xt ) 

wi wi 
(3) 

For each forward model there is a paired inverse model whose inputs are the desired 
next state X;+I and the current state Xt. The ith inverse model produces a motor 
command ul as output 

i _ ,1,( Z * ) Ut - 'f/ at, x t+I ' Xt (4) 

where al are the parameters of some function approximator 'lb . 

The total motor command is the summation of the outputs from these inverse models 
using the responsibilities. A: , to weight the contributions. 

n 11 

Ut = LA~U: = LA;t.b(a;,x;+l,xd (5) 
i=1 ;=1 

Once again. the responsibilities are used to weight the learning of each inverse model. 
This ensures t hat inverse models learns only when their paired forward models make 
accurate predictions. Although for supervised learning the desired control command 
u; is needed (hut is generally not available), we can approximate (ui - uD with the 
feedback motor command signal u fb [7] . 

I Because selecting modules can be regarded as a hidden state estimation problem , an 
alternative way to determine appropriate forward models is to use the E~1 algorithm [3J. 
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(6) 

In summary, the responsibility signals are used in three ways- first to gate the learning 
of the forward models (Equation 3), second to gate the learning of the inverse models 
(Equation 6), and third to gate the contribution of the inverse models to the final motor 
command (Equation 5). 

2.2 Multiple responsibility predictors: Feedforward selection 

While the system described so far can learn mUltiple controllers and switch between 
them based on prediction errors, it cannot provide switching before a motor command 
has been generated and the consequences of this action evaluated. To allow the system 
to switch controllers based on contextual information, we introduce a new component, 
the responsibility predictor (RP). The input to this module, yt, contains contextual 
sensory information (Figure 1) and each RP produces a prediction of its own module's 
responsibility 

(7) 

These estimated responsibilities can then be compared to the actual responsibilities A.~ 
generated from the responsibility estimator. These error signals are used to update the 
weights of the RP by supervised learning. 

Finally a mechanism is required to combine the responsibility estimates derived from 
the feed forward RP and from the forward models' prediction errors derived from 
feedback. We determine the final value of responsibility by using Bayes rule; mul-
tiplying the transformed feedback errors e- lx ,-5;;12/O'2 by the feed forward responsibil­
ity ~; and then normalizing across the modules within the responsibility estimator: 
~ ie-IXt -5;; 12/20'2/ ",n ~j e-Ixt -5;{1 2 /20'2 

t ~)=l t 

The estimates of the responsibilities produced by the RP can be considered as prior 
probabilities because they are computed before the movement execution based only on 
extrinsic signals and do not rely on knowing the consequences of the action. Once an 
action takes place, the forward models ' errors can be calculated and this can be thought 
of as the likelihood after the movement execution based on knowledge of the result of 
the movement. The final responsibility which is the product of the prior and likelihood, 
normalized across the modules, represents the posterior probability. Adaptation of the 
RP ensures that the prior probability becomes closer to the posterior probability. 

3 Simulation of arm tracking while manipulating objects 

3.1 Learning and control of different objects 
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Figure 2: Schematic illustration of the simulation experiment in which the arm makes 
reaching movements while grasping different objects with mass M, damping Band 
spring K. The object properties are shown in the Table. 
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To examine motor learning and control we simulated a task in which the hand had 
to track a given trajectory (30 s shown in Fig. 3 (b)), while holding different objects 
(Figure 2). The manipulated object was periodically switched every 5 s between three 
different objects Ct, {3 and 'Y in this order. The physical characteristics of these ob­
jects are shown in Figure 2. The task was exactly the same as that of Gomi and 
Kawato [4], and simulates recent grip force-load force coupling experiments by Flana­
gan and Wing [2]. 

In the first simulation, three forward-inverse model pairs (modules) were used: the same 
number of modules as the number of objects. We assumed the existence of a perfect 
inverse dynamic model of the arm for the control of reachiilg movements. In each 
module, both forward (¢ in (1)) and inverse ('IjJ in (4)) models were implemented as a 
linear neural network2 . The use of linear networks allowed M, Band K to be estimated 
from the forward and inverse model weights. Let MJ ,Bf ,Kf be the estimates from 
the jth forward model and Mj,B},Kj be the estimates from the jth inverse model. 

Figure 3(a) shows the evolution of the forward model estimates of MJ ,Bf ,Kf for 
the three modules during learning. During learning the desired trajectory (Fig. 3(b)) 
was repeated 200 times. The three modules started from randomly selected initial 
conditions (open arrows) and converged to very good approximations of the three 
objects (filled arrows) as shown in Table 1. Each of the three modules converged to 
Ct, {3 and 'Y objects, respectively. It is interesting to note that all the estimates of the 
forward models are superior to those of inverse models. This is because the inverse 
model learning depends on how modules are switched by the forward models . 

... -J 

, . 

(a) 

Figure 3: (a) Learning acquisition of three pairs of forward and inverse models corre­
sponding to three objects. (b) Responsibility signals from the three modules (top 3) 
and tracking performance (bottom) at the beginning (left) and at the end (right) of 
learning. 
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5.0071 
8.0029 

7.0040 
3.0010 

4.0000 
0.9999 

5.0102 
7.8675 

6.9554 
3.0467 

Table 1: Learned object characteristics 

4.0089 
0.9527 

Figure 3(b) shows the performance of the model at the beginning (left) and end (right) 
of learning. The top 3 panels show the responsibility signals of Ct, {3 and 'Y modules in 

2 Any kind of architecture can be adopted instead of linear networks 
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this order, and the bottom panel shows the hand's actual and desired trajectories. At 
the start of learning, the three modules were equally poor and thus generated almost 
equal responsibilities (1/3) and were involved in control almost equally. As a result, 
the overall control performance was poor with large trajectory errors. However, at the 
end of learning, the three modules switched almost perfectly (only three noisy spikes 
were observed in the top 3 panels on the right), and no trajectory error was visible 
at this resolution in the bottom panel. If we compare these results with Figure 7 of 
Gomi and Kawato [4] for the same task, the superiority of the MPFIM compared to 
the gating-expert architecture is apparent. Note that the number of free parameters 
(synaptic weights) is smaller in the current architecture than the other. The difference 
in performance comes from two features of the basic architecture. First, in the gating 
architecture a single gating network tries to divide the space while many forward models 
splits the space in MPFIM. Second, in the gating architecture only a single control error 
is used to divide the space, but mUltiple prediction errors are simultaneously utilized 
in MPFIM. 

3.2 Generalization to a novel object 

A natural question regarding MPFIM architecture is how many modules need to be 
used. In other words, what happens if the number of objects exceeds the number of 
modules or an already trained MPFIM is presented with an unfamiliar object. To 
examine this, the MPFIM trained from 4 objects a,(3" and <5 was presented with a 
novel object 'fJ (its (M, B, K) is (2.02,3.23,4.47)). Because the object dynamics can be 
represented in a 3-dimensional parameter space and the 4 modules already acquired 
define 4 vertices of a tetrahedron within the 3-D space, arbitrary object dynamics 
contained within the tetrahedron can be decomposed into a weighted average of the 
existing 4 forward modules (internal division point of the 4 vertices). The theoreti­
cally calculated weights of 'fJ were (0.15,0.20,0.35,0.30). Interestingly, each module's 
responsibility signal averaged over trajectory was (0.14,0.24,0.37,0.26). Although the 
responsibility was computed in the space of accelerations prediction by soft-max and 
had no direct relation to the space of (M, B, K), the two vectors had very similar val­
ues. This demonstrates the flexibility of MPFIM architecture which originates from its 
probabilistic soft-switching mechanism. This is in sharp contrast to the hard switching 
of Narendra [8] for which only one controller can be selected at a time. 

3.3 Feedforward selection and the size-weight illusion 

Figure 4: Responsibility predictions based on contextual information of 2-D object 
shapes (top 3 traces) and corresponding acceleration error of control induced by the 
illusion (bottom trace) 

In this section, we simulated prior selection of inverse models by responsibility pre­
dictors based on contextual information, and reproduce the size-weight illusion. Each 
object was associated with a 2-D shape represented as a 3x3 binary matrix, which was 
randomly placed at one of four possible locations on a 4x4 retinal matrix (see Gomi 
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and Kawato for more details). The retinal matrix was used as the contextual input 
to the RP (3-layer sigmoidal feedforward network). During the course of learning, the 
combination of manipulated objects and visual cues were fixed as A-a, B-,B and C­
-y. After 200 iterations of the trajectory, the combination A--y was presented for the 
first. Figure 4 plots the responsibility signals of the three modules (top 3 traces) and 
corresponding acceleration error of the control induced by the illusion (bottom trace). 
The result replicates the size-weight illusion [1, 5] seen in the erroneous responsibility 
prediction of the a responsibility predictor based on the contextual signal A and its 
correction by the responsibility signal calculated by the forward models . Until the 
onset of movement (time 0) , A was always associated with light Ct, and C was always 
associated with heavy -y. Prior to movement when A was associated with -y, the a mod­
ule was switched on by the visual contextual information, but soon after the movement 
was initiated, the responsibility signal from the forward model's prediction dominated, 
and the -y module was properly selected. Furthermore, after a while, the responsibility 
predictor of the modules were re-Iearned to capture this new association between the 
objects visual shape and its dynamics. 

In conclusion, the MPFIM model of human motor learning and control, like the human 
motor system, can learn multiple tasks, shows generalization to new tasks and an ability 
to switch between tasks appropriately. 
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