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Abstract 

A new paradigm is proposed for sorting spikes in multi-electrode 
data using ratios of transfer functions between cells and electrodes. 
It is assumed that for every cell and electrode there is a stable 
linear relation. These are dictated by the properties of the tissue, 
the electrodes and their relative geometries. The main advantage 
of the method is that it is insensitive to variations in the shape and 
amplitude of a spike. Spike sorting is carried out in two separate 
steps. First, templates describing the statistics of each spike type 
are generated by clustering transfer function ratios then spikes are 
detected in the data using the spike statistics. These techniques 
were applied to data generated in the escape response system of 
the cockroach. 

1 Introduction 

Simultaneous recording of activity from many neurons can greatly expand our un­
derstanding of how information is coded in neural systems[l]. 11ultiple electrodes 
are often used to measure the activity in neural tissue and have become a standard 
tool in neurophysiology [2 , 3,4]. Since every electrode is in a different position it will 
measure a different contribution from each of the different neurons . Simply stated, 
the problem is this: how can these complex signals be untangled to determine when 
each individual cell fired? This problem is difficult because, a) the objects being 
classified are very similar and often noisy, b) spikes coming from the same cell can 
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vary in both shape and amplitude, depending on the previous activity of the cell 
and c) spikes can overlap in time, resulting in even more complex temporal patterns. 

Current approaches to spike sorting are based primarily on the presumed consis­
tency of the spike shape and amplitude for a given cell [5, 6]. This is clearly the 
only possible basis for sorting using a single electrode. Multiple electrodes, however, 
provide additional independent information through the differences in the way the 
same neuron is detected by the different electrodes. The same spike measured on 
different electrodes can differ in amplitude, shape and its relative timing. These 
differences can depend on the specific cell, the electrode and the media between 
them. They can be characterized by linear transfer functions that are invariant to 
changes in the overall spike waveform. In this paper the importance of this infor­
mation is highlighted by using only the differences in how signals are measured on 
different electrodes. It is then shown that clusters of similar differences correspond 
to the same neuron. It should be emphasized that in a full treatment this transfer 
function information will be combined with other cues to sort spikes. 

2 Spikes, spectra and noise 

The basic assumption behind the spike sorting approach described here is that the 
medium between each neuron-electrode pair can be characterized by a linear system 
that remains fixed during the course of an experiment. This assumption is justified 
by the approximately linear dielectric properties of the electrode and its surrounding 
nerve tissues. 

Linear systems are described by their phase and amplitude response to pure fre­
quencies , namely, by their complex transfer function H(w) = O(w)j I(w), where 
I(w) and O(w) are the complex spectra (Le. Fourier transform, henceforth called 
spectrum) of the input and output of the system, respectively. In the experiments 
described here the input signal is the spectrum of the action potential generated 
by cell j, denoted by Sj(w) and the output signal is the spectrum of the voltage 
measured at electrode Il, denoted by VJ.L(w). The transfer function of the system 
that links Sj(w) and VJ.L(w) is then defined as Hf(w) = VJ.L(w)jSj(w). 

If the transfer functions are fixed in time, the ratio between the complex spectrum 
of any spike from cell j as detected by electrodes Il and v , VJ.L (w) and V II (w ), is 
given by, 

Hf(w) 
Hj(w) , 

(1) 

which is independent of the cell action potential spectrum Sj(w), provided that the 
spike was detected by both electrodes. 

Thus, even if a spike varies in shape and amplitude, Tjll (w) will remain a fixed 
complex function of frequency. This ratio is also invariant with respect to time 
translations of the spikes. In addition, the frequency components are asymptot­
ically un correlated for stationary processes, which justifies treating the frequency 
components as statistically independent[7] . The idea behind the approach described 
here is shown in Figure 1. 

In real experiments, however, noise can corrupt the invariance of Tjll. There are 
several possible sources of noise in experiments of this kind: a) fluctuations in the 
transfer function, b) changes in the spike shape, <;j and c) electrical and electro­
chemical noise, nJ.L. 
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Figure 1: The idea behind spike sorting by clustering of transfer function ratios. 
Two spikes from the same cell (cell-I) may vary in shape/ amplitude during bursting 
activity, for example. Although the spike shapes may differ, the transfer functions 
relating them to the electrodes do not change so the transfer function ratios are 
similar (two left columns). A different cell (cell-2) has a different transfer function 
ratio even though the spikes shapes themselves are similar to those of cell-l (right 
column). 

If Hf varies slowly with time, the transfer function noise is small relative to <;j, n Y 

and n Y • Try can then be expanded to first order in <;j, nJ.l. and n Y as 

(2) 

which is independent of <;j. Since the noise, nJ.l., is un correlated with the spike signal, 
5 j , the variance at each frequency component can be considered to be Gaussian 
with equal variances on the real and imaginary axes. Thus the mean of Try will be 
independent of 5 j , <;j and nJ.l. while its variance will be inversely proportional to 5 j . 

3 A model system: the escape response of the cockroach 

These techniques were tested on a relatively simple neural system - the escape 
response system of the American cockroach. The escape behaviour, which has been 
studied extensively [9, 10, 11], is activated when the insect detects air currents 
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Figure 2: A schematic representation of the experiment. Typical raw data mea­
sured on two electrodes is shown at right. Relative time delays are evident in the 
inset, but are not a necessary condition for the sorting techniques described here. 
Abbreviations are: p-puffers, cg-circal ganglion, c-cerci. 

produced by the movements of a predator. The insect detects the approach of a 
predator, determines the direction of approach and starts running in an appropriate 
direction. The cockroach does this by detecting the movement of several hundred 
fine hairs located on two appendages, called cerci, protruding from the posterior 
end of the animal. Each of these hairs is connected to a single neuron. Axons 
from these cells converge on a dense neuropil called the cercal ganglion (cg), where 
directional information is extracted and conveyed to the rest of the body by axons 
in the abdominal nerve. This is shown schematically in Figure 2. 

This system proved to be well suited as a first test of the sorting technique. The 
system is simple enough so that it is not overwhelming (since only 7 neurons are 
known to contribute to the code) but complex enough to really test the approach . 
In addition, the nerve cords are linear in geometry, easily accessible and very stable. 

Male cockroaches (Periplaneta americana) were dissected from the dorsal side to 
expose the nerve cord. The left and right cords were gently separated and two tung­
sten wire electrodes were hooked onto the connective about 2 mm apart, separated 
by abdominal ganglia. The stimulus was presented by two loudspeakers driving 
two miniature wind tunnels pointed at the cerci, at 90 degrees from one another 
as shown in Figure 2. Recordings typically lasted for several hours. Data were 
collected with a sampling frequency of 2 . 104 Sis which was sufficient to preserve 
the high frequency components of the spikes. 
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Figure 3: Real and imaginary parts of Trv a single w. The circles have centers 
(radii) equal to the average (variance) of Trv at w = 248.7 rad S-l. Note that 
while some clusters seem to overlap at this frequency they may be well seperated 
at others . Cluster-l is dispersed throughout the complex plane and its variance is 
well beyond the range of this plot. 

4 Clustering and the detection of spikes 

The spike sorting algorithm described here is done is two separate stages. First, 
a statistical model of the individual spike types is built from "clean" examples 
found in the data. Only then are occurrences of these spikes detected in the multi­
electrode data. This two-step arrangement allows a great deal of flexibility by 
disconnecting the clustering from the detection. For example, here the clustering 
was done on transfer function ratios while the detection was done on full complex 
spectra. These stages are described below in more detail. 

4.1 The clustering phase 

First, the multi-electrode recording is chopped into 3 ms long frames using a sliding 
window. Frames that have either too low total energy or too high energy at the 
window edges are discarded. This leaves frames that are energetic in their central 
2 ms and are assumed to carry one spike. No attempt is made to find all spikes in 
the data. Instead, the idea is to generate a set of candidate spike types from clean 
frames. 

Once a large collection of candidate spikes is found, TrV(w) is calculated for every 
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Figure 4: Results of clustering spikes using transfer function ratios. Note that 
although cluster-5 and cluster-6 are similarly shaped on hook-l they are time shifted 
on hook-3. Cluster-l is made up of overlaps which are dealt with in the detection 
phase. 

spike. These are then grouped together into clusters containing similar Ttl! (w). 
Results of the clustering are shown in Figure 3 while the corresponding waveforms 
are shown in Figure 4. Full complex spectra are then used to build a statisti­
cal model of the different spike types, {Vj(w), af(w)}, which represent each cell's 
action potential as it appears on each of the electrodes. 

4.2 The detection phase 

Once the cluster statistics are determined , an independent detection algorithm is 
used. The data is again broken into short frames but now the idea is to find which 
of the spike types (represented by the different clusters found in the previous steps) 
best represents the data in that frame. Each frame can contain either noise, a spike 
or an overlap of 2 spikes (overlaps of more than 2 spikes are not dealt with). This 
part is not done on transfer function ratios because dealing with overlaps is more 
difficult. 

5 Concl usion 

A new method of spike sorting using transfer function ratios has been presented. 
In effect the sorting is done on the properties of the tissue between the neuron and 
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the electrode and individual spike shapes become less important. This method may 
be useful when dealing with bursting cells where the transfer function ratios should 
remain constant even though the spike amplitude can change significantly. This 
technique may prove to be a useful tool for analysing multi-electrode data. 
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