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Abstract 
We present a new energy-minimization framework for the graph 
isomorphism problem which is based on an equivalent maximum 
clique formulation. The approach is centered around a fundamental 
result proved by Motzkin and Straus in the mid-1960s, and recently 
expanded in various ways, which allows us to formulate the maxi­
mum clique problem in terms of a standard quadratic program. To 
solve the program we use "replicator" equations, a class of simple 
continuous- and discrete-time dynamical systems developed in var­
ious branches of theoretical biology. We show how, despite their 
inability to escape from local solutions, they nevertheless provide 
experimental results which are competitive with those obtained us­
ing more elaborate mean-field annealing heuristics. 

1 INTRODUCTION 
The graph isomorphism problem is one of those few combinatorial optimization 
problems which still resist any computational complexity characterization [6]. De­
spite decades of active research, no polynomial-time algorithm for it has yet been 
found. At the same time, while clearly belonging to N P, no proof has beel1 pro­
vided that it is NP-complete. Indeed, there is strong evidence that this cannot be 
the case for, otherwise, the polynomial hierarchy would collapse [5]. The current 
belief is that the problem lies strictly between the P and NP-complete classes. 

Because of its theoretical as well as practical importance, the problem has attracted 
much attention in the neural network community, and various powerful heuris­
tics have been developed [11, 18, 19, 20]. Following Hopfield and Tank's seminal 
work [10], the typical approach has been to write down a (continuous) energy func­
tion whose minimizers correspond to the (discrete) solutions being sought, and then 
construct a dynamical system which converges toward them. Almost invariably, all 
the algorithms developed so far are based on techniques borrowed from statistical 
mechanics, in particular mean field theory, which allow one to escape from poor 
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local solutions. 

In this paper, we develop a new energy-minimization framework for the graph iso­
morphism problem which is based on the idea of reducing it to the maximum clique 
problem, another well-known combinatorial optimization problem. Central to our 
approach is a powerful result originally proved by Motzkin and Straus [13], and 
recently extended in various ways [3, 7, 16], which allows us to formulate the maxi­
mum clique problem in terms of an indefinite quadratic program. We then present 
a class of straightforward continuous- and discrete-time dynamical systems known 
in mathematical biology as replicator equations, and show how, thanks to their 
dynamical properties, they naturally suggest themselves as a useful heuristic for 
solving the proposed graph isomorphism program. The extensive experimental re­
sults presented show that, despite their simplicity and their inherent inability to 
escape from local optima, replicator dynamics are nevertheless competitive with 
more sophisticated deterministic annealing algorithms. The proposed formulation 
seems therefore a promising framework within which powerful continuous-based 
graph matching heuristics can be developed, and is in fact being employed for solv­
ing practical computer vision problems [17J. More details on the work presented 
here can be found in [15J. 

2 A QUADRATIC PROGRAM FOR GRAPH 
ISOMORPHISM 

2.1 GRAPH ISOMORPHISM AS CLIQUE SEARCH 

Let G = (V, E) be an undirected graph, where V is the set of vertices and E ~ V x V 
is the set of edges. The order of G is the number of its vertices, and its size is the 
number of edges. Two vertices i,j E V are said to be adjacent if (i,j) E E. The 
adjacency matrix of G is the n x n symmetric matrix A = (aij) defined as follows: 
aij = 1 if (i,j) E E, aij = a otherwise. 

Given two graphs G' = (V', E') and Gil = (V", E") having the same order and 
size, an isomorphism between them is any bijection ¢ : V' -t V" such that 
(i,j) E E' {:} (¢(i),¢(j)) E E", for all i,j E V'. Two graphs are said to be 
isomorphic if there exists an isomorphism between them. The graph isomorphism 
problem is therefore to decide whether two graphs are isomorphic and, in the af­
firmative, to find an isomorphism. Barrow and Burstall [IJ introduced the notion 
of an association graph as a useful auxiliary graph structure for solving general 
graphjsubgraph isomorphism problems. The association graph derived from G' 
and Gil is the undirected graph G = (V, E), where V = V' X V" and 

E = {((i, h), (j, k)) E V x V : i:f= j, h:f= k, and (i,j) E E' {:} (h, k) E E"} . 

Given an arbitrary undirected graph G = (V, E), a subset of vertices C is called a 
clique if all its vertices are mutually adjacent , i.e. , for all i,j E C we have (i,j) E E. 
A clique is said to be maximal if it is not contained in any larger clique, and 
maximum if it is the largest clique in the graph. The clique number, denoted by 
w(G), is defined as the cardinality of the maximum clique. 

The following result establishes an equivalence between the graph isomorphism 
problem and the maximum clique problem (see [15J for proof). 

Theorem 2.1 Let G' and Gil be two graphs of order n , and let G be the correspond­
ing association graph. Then, G' and Gil are isomorphic if and only if w(G) = n. In 
this case, any maximum clique of G induces an isomorphism between G' and Gil , 
and vice versa. 
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2.2 CONTINUOUS FORMULATION OF MAX-CLIQUE 

Let G = (V, E) be an arbitrary undirected graph of order n, and let Sn denote the 
standard simplex of lRn: 

Sn={xElRn : Xi~O foralli=l. .. n, and tXi=I}. 
z== 1 

Given a subset of vertices C of G, we will denote by XC its characteristic vector 
which is the point in Sn defined as xI = 1/ICI if i E C, xi = 0 otherwise, where ICI 
denotes the cardinality of C. 

Now, consider the following quadratic function: 

f(x) = x T Ax (1) 

where "T" denotes transposition. The Motzkin-Straus theorem [13] establishes a 
remarkable connection between global (local) maximizers of fin Sn and maximum 
(maximal) cliques of G. Specifically, it states that a subset of vertices C of a 
graph G is a maximum clique if and only if its characteristic vector XC is a global 
maximizer of the function f in Sn. A similiar relationship holds between (strict) 
local maximizers and maximal cliques [7, 16]. 

One drawback associated with the original Motzkin-Straus formulation relates to 
the existence of spurious solutions, i.e., maximizers of f which are not in the form 
of characteristic vectors [16]. In principle, spurious solutions represent a problem 
since, while providing information about the order of the maximum clique, do not 
allow us to extract the vertices comprising the clique. Fortunately, there is straight­
forward solution to this problem which has recently been introduced and studied 
by Bomze [3]. Consider the following regularized version of function f: 

j (x) = x T Ax + ~ X T X . (2) 

The following is the spurious-free counterpart of the original Motzkin-Straus theo­
rem (see [3] for proof). 

Theorem 2.2 Let C be a subset of vertices of a graph G, and let X C be its charac­
teristic vector. Then the following statements hold: 

(a) C is a maximum clique of G if and only if XC is a global maximizer of j over 
the simplex Sn. Its order is then given by ICI = 1/2(1 - f(x C )). 

(b) C is a maximal clique of G if and only if XC is a local maximizer of j in Sn. 

(c) All local (and hence global) maximizers of j over Sn are strict. 

Unlike the Motzkin-Straus formulation, the previous result guarantees that all max­
imizers of j on Sn are strict , and are characteristic vectors of maximal/maximum 
cliques in the graph. In an exact sense, therefore, a one-to-one correspondence ex-
ists between maximal cliques and local maximizers of j in Sn on the one hand, and 
maximum cliques and global maximizers on the other hand. 

2.3 A QUADRATIC PROGRAM FOR GRAPH ISOMORPHISM 

Let G' and Gil be two arbitrary graphs of order n, and let A denote the adjacency 
matrix of the corresponding association graph, whose order is assumed to be N. 
The graph isomorphism problem is equivalent to the following program: 

maXImIze j(x) = xT (A + ~ IN)X 
subject to x E SN 

(3) 
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More precisely, the following result holds, which is a straightforward consequence 
of Theorems 2.1 and 2.2. 

Theorem 2.3 Let G' and Gil be two graphs of order n, and let x* be a global 
solution of program (3), where A is the adjacency matrix of the association graph 
of G' and Gil . Then, G' and Gil are isomorphic if and only if j(x*) = 1 - 1/2n. 
In this case, any global solution to (3) induces an isomorphism between G' and Gil, 
and vice versa. 

In [15] we discuss the analogies between our objective function and those proposed 
in the literature (e.g., [18, 19]). 

3 REPLICATOR EQUATIONS AND GRAPH 
ISOMORPHISM 

Let W be a non-negative n x n matrix, and consider the following dynamical system: 

~Xi(t) = Xi(t) ("i(t) - t.X;(t)";(t)) , i = 1. . . n 

where 7ri(t) = 2:.7=1 WijXj(t), i = 1 . . . n , and its discrete-time counterpart: 

Xi(t)7ri (t) 
xi(t+1)=2:.n () .()' 

j = l x] t 7r] t 
i=l .. . n. 

(4) 

(5) 

It is readily seen that the simplex Sn is invariant under these dynamics, which 
means that every trajectory starting in Sn will remain in Sn for all future times. 

Both (4) and (5) are called replicator equations in theoretical biology, since they 
are used to model evolution over time of relative frequencies of interacting, self­
replicating entities [9]. The discrete-time dynamical equations turn also out to be 
a special case of a general class of dynamical systems introduced by Baum and 
Eagon [2] in the context of Markov chain theory. 

Theorem 3.1 If W is symmetric, then the quadratic polynomial F(x) = xTWx is 
strictly increasing along any non-constant trajectory of both continuous-time (4) and 
discrete-time (5) replicator equations. Furthermore, any such trajectory converges 
to a (unique) stationary point. Finally, a vector x E Sn is asymptotically stable 
under (4) and (5) if and only if x is a strict local maximizer of F on Sn. 

The previous result is known in mathematical biology as the Fundamental Theorem 
of Natural Selection [9, 21]. As far as the discrete-time model is concerned, it 
can be regarded as a straightforward implication of the more general Baum-Eagon 
theorem [2]. The fact that all trajectories of the replicator dynamics converge to a 
stationary point is proven in [12]. 

Recently, there has been much interest in evolutionary game theory around the 
following exponential version of replicator equations , which arises as a model of 
evolution guided by imitation [8, 21]: 

:t Xi (t) = Xi(t) (L:7~1 ~:;;;~ .. '(t) - 1), i = l... n (6) 

where K, is a positive constant. As K, tends to 0, the orbits of this dynamics approach 
those of the standard, first-order replicator model (4), slowed down by the factor 
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K. Hofbauer [8] has recently proven that when the matrix W is symmetric, the 
quadratic polynomial F defined in Theorem 3.1 is also strictly increasing, as in 
the first-order case. After discussing various properties of this, and more general 
dynamics, he concluded that the model behaves essentially in the same way as the 
standard replicator equations, the only difference being the size of the basins of 
attraction around stable equilibria. A customary way of discretizating equation (6) 
is given by the following difference equations: 

xi(t)e"1l'; (t) 
Xi(t + 1) = L:n ( ) (t)' i = l. .. n (7) . X · t e"1l'J )=1 ) 

which enjoys many of the properties of the first-order system (5), e.g., they have 
the same set of equilibria. 

The properties discussed above naturally suggest using replicator equations as a 
useful heuristic for the graph isomorphism problem. Let G' and G" be two graphs 
of order n, and let A denote the adjacency matrix of the corresponding N-vertex 
association graph G. By letting 

1 
W = A + "2IN 

we know that the replicator dynamical systems, starting from an arbitrary initial 
state, will iteratively maximize the function j(x) = xT(A + !IN)x in SN, and will 
eventually converge to a strict local maximizer which, by virtue of Theorem 2.2 will 
then correspond to the characteristic vector of a maximal clique in the association 
graph. This will in turn induce an isomorphism between two subgraphs of G' and 
G" which is "maximal," in the sense that there is no other isomorphism between 
subgraphs of G' and G" which includes the one found. Clearly, in theory there is no 
guarantee that the converged solution will be a global maximizer of j, and therefore 
that it will induce an isomorphism between the two original graphs . Previous work 
done on the maximum clique problem [4, 14], and also the results presented in this 
paper, however, suggest that the basins of attraction of global maximizers are quite 
large, and very frequently the algorithm converges to one of them. 

4 EXPERIMENTAL RESULTS 
In the experiments reported here, the discrete-time replicator equation (5) and its 
exponential counterpart (7) with K = 10 were used. The algorithms were started 
from the barycenter of the simplex and they were stopped when either a maximal 
clique was found or the distance between two successive points was smaller than a 
fixed threshold, which was set to 10-17 . In the latter case the converged vector was 
randomly perturbed, and the algorithm restarted from the perturbed point . Because 
of the one-to-one correspondence between local maximizers and maximal cliques, 
this situation corresponds to convergence to a saddle point. All the experiments 
were run on a Sparc20. 

Undirected 100-vertex random graphs were generated with expected connectivities 
ranging from 1 % to 99%. For each connectivity value, 10'0 graphs were produced and 
each of them had its vertices randomly permuted so as to obtain a pair of isomorphic 
graphs. Overall, therefore, 1500 pairs of isomorphic graphs were used. Each pair 
was given as input to the replicator models and, after convergence, a success was 
recorded when the cardinality of the returned clique was equal to the order of the 
graphs given as input (Le., 100) .1 Because of the stopping criterion employed, this 

1 Due to the high computational time required, in the 1 % and 99% cases the first-order 
replicator algorithm (5) was tested only on 10 pairs, instead of 100. 
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Figure 1: Percentage of correct isomorphisms obtained using the first-order (left) and the 
exponential (right) replicator equations, as a function of the expected connectivity. 
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Figure 2: Average computational time taken by the first-order (left) and the exponential 
(right) replicator equations, as a function of the expected connectivity. The vertical axes 
are in logarithmic scale, and the numbers in parentheses represent the standard deviation. 

guarantees that a maximum clique, and therefore a correct isomorphism, was found. 
The proportion of successes as a function of the expected connectivities for both 
replicator models is plotted in Fig. 1, whereas Fig. 2 shows the average CPU time 
taken by the two algorithms to converge (in logarithmic scale). Notice how the 
exponential replicator system (7) is dramatically faster and also performs bet.ter 
than the first-order model (5). 

These results are significantly superior to those reported by Simic [20] who obtained 
poor results at connectivities less than 40% even on smaller graphs (Le. , up to 75 
vertices). They also compare favorably with the results obtained more recently 
by Rangarajan et ai. [18] on 100-vertex random graphs for connectivities up to 
50%. Specifically, at 1% and 3% connectivities they report a percentage of correct 
isomorphisms of about 30% and 0%, respectively. Using our approach we obtained, 
on the same kind of graphs, a percentage of success of 80% and 11%, respectively. 
Rangarajan and Mjolsness [19] also ran experiments on 100-vertex random graphs 
with various connectivities, using a powerful Lagrangian relaxation network. Except 
for a few instances , they always obtained a correct solution. The computational 
time required by their model, however, turns out to largely exceed ours. As an 
example, the average time taken by their algorithm to match two 100-vertex 50%­
connectivity graphs was about 30 minutes on an SGI workstation. As shown in 
Fig. 2, we obtained identical results in about 3 seconds. 

It should be emphasized that all the algorithms mentioned above do incorporate 
sophisticated annealing mechanisms to escape from poor local minima. By con­
trast, in the presented work no attempt was made to prevent the algorithms from 
converging to such solutions. 
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